吴恩达学习笔记-支持向量机SVM

这篇博客详细介绍了支持向量机(SVM)的基础知识,包括其作为最大间隔线性分类器的特性,以及如何通过核技巧处理非线性问题。文章讨论了SVM的优化函数,特别是如何从逻辑回归的代价函数转换为SVM的代价函数,并解释了参数C对离群点处理的影响,C值的大小决定了对离群点的容忍度。此外,还简单对比了线性SVM与非线性SVM的实现代码。
摘要由CSDN通过智能技术生成

支持向量机(support vector machine,SVM)的基本模型是定义在特征空间上间隔最大的线性分类器。是一种二分类模型,当采用了核技巧后,支持向量机就可以用于非线性分类
优化函数
在这里插入图片描述
将代价函数中的log函数代替为图片中紫色线条所表示的函数,同时删除系数m,和正则化的系数λ,对于logistic函数的代价函数,可以表示为A+λB,而SVM的代价函数表示为cA+B
在这里插入图片描述
最后,SVM的代价函数表示为
在这里插入图片描述
logistic函数在输出为0-1的概率值
SVM的输出直接就是0或1,即最终的预测结果

SVM分类器原理:大间距分类器
在这里插入图片描述
参数C对分类的影响
在这里插入图片描述
其实C是一个惩罚系数,是对于

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值