模型的分类与对比

本文从学习方法角度对比了参数模型和非参数模型,探讨了各自的优缺点。参数模型以简单的计算代价获取较好模型,依赖于先验知识;非参数模型在大数据下能逼近真实模型,但计算复杂度高。此外,数据模型和算法模型在可解释性和精确性上各有侧重。随着大数据的发展,非参数模型如XGBOOST等在实际应用中展现出强大效能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里写图片描述

从学习方法角度进行划分

参数模型 vs 非参数模型:全局普适性 vs 局部适用性

❶ 参数模型

“新闻总是抄袭历史,模式在深处等待发掘。“

当我们对问题有认知,有了「定性」的判断,然后我们便可以用「定量」的方式将它们刻画出来。所谓“参数模型”。

优点:简单,只需付出较小的计算代价就可以从假设空间中习得一个较好的模型

缺点:其可用性却严重依赖于先验知识的可信度,但若先验分布错误,则无法学出好的结果。

❷ 非参数模型

“知之为知之,不知为不知,是知也。”

当我们对问题知之甚少,最好的办法反而是避免对潜在模型做出过多的假设,所谓“非参数模型。”

优点:当训练数据趋于无穷多时,非参数模型可以逼近任意复杂的真实模型。

缺点:和参数相比,非参数模型的时空复杂度都会比参数模型大得多。

误区:“非参数模型”不是“无参数模型”,恰恰相反,非参数模型意味着模型参数的数目是不固定的,并且极有可能是无穷大,这决定了非参数模型不可能像参数模型那样用固定且有限数目的参数来完全刻画。

❸ 参数模型 vs 非参数模型

例子: 假定一个训练集中有 99 个数据,其均值为 100,方差为 1。那么对于第 100 个数据来说,它会以 99% 的概率小于哪一个数值呢࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值