2732: [HNOI2012]射箭
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3363 Solved: 1041
[ Submit][ Status][ Discuss]
Description
沫沫最近在玩一个二维的射箭游戏,如下图 1 所示,这个游戏中的 x 轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴。沫沫控制一个位于(0,0)的弓箭手,可以朝 0 至 90?中的任意角度(不包括 0度和 90度),以任意大小的力量射出带有穿透能力的光之箭。由于游戏中没有空气阻力,并且光之箭没有箭身,箭的轨迹会是一条标准的抛物线,被轨迹穿过的所有靶子都认为被沫沫射中了,包括那些 只有端点被射中的靶子。这个游戏有多种模式,其中沫沫最喜欢的是闯关模式。在闯关模式中,第一关只有一个靶 子,射中这个靶子即可进入第二关,这时在第一关的基础上会出现另外一个靶子,若能够一箭 双雕射中这两个靶子便可进入第三关,这时会出现第三个靶子。依此类推,每过一关都会新出 现一个靶子,在第 K 关必须一箭射中前 K 关出现的所有 K 个靶子才能进入第 K+1 关,否则游戏 结束。沫沫花了很多时间在这个游戏上,却最多只能玩到第七关“七星连珠”,这让她非常困惑。 于是她设法获得了每一关出现的靶子的位置,想让你告诉她,最多能通过多少关
Input
输入文件第一行是一个正整数N,表示一共有N关。接下来有N行,第i+1行是用空格隔开的三个正整数xi,yi1,yi2(yi1<yi2 ),表示第i关出现的靶子的横坐标是xi,纵坐标的范围是从yi1到yi2 。
输入保证30%的数据满足N≤100,50%的数据满足N≤5000,100%的数据满足N≤100000且给 出的所有坐标不超过109 。
Output
仅包含一个整数,表示最多的通关数。
Sample Input
2 8 12
5 4 5
3 8 10
6 2 3
1 3 7
Sample Output
HINT
数据已加强By WWT15。特鸣谢!---2015.03.09
数据再加一组---2017.3.25
Source
非常坑的题目。。。
这题的主要思路就是半平面交+二分
我们先二分一个能通过的关卡数
然后对于一个关卡来说,如果一个抛物线能通过它,显然有
y1 <= ax ^ 2 + bx <= y2
由于两个不等式是相似的,我们这里只考虑第一个
ax ^ 2 + bx >= y1
变换一下
bx >= y1 - ax ^ 2
b >= y1 / x - ax
这时候我们可以把-ax + y1 / x看成一条直线,于是就变成了线性规划的样子
跑一遍半平面交,判一下当前条件下是否有解,即半平面是否不为空即可
但是!但是
这题的坑点还没有展现出来。。
如果你交了这题,你会惊奇地发现
这题tm卡精度!!!!!
呵呵我还能说什么
这题不能用double,必须要开long double..........
eps要反复尝试。。。。一般开到1e-20
然后,就算是这样。。。lz的代码依然WA了????
要到数据以后本地测AC???????
还能有这种操作???????
代码(本地测AC,bzoj上WA的代码,谨慎提交):
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long double DL;
const DL s = 200201;
const DL eps = 1e-20;
const int maxn = 100100;
struct point{
DL x,y;
}p[2 * maxn];
struct vec{
point p;
DL x,y,pri;
int id;
}L[2 * maxn],a[2 * maxn],q[2 * maxn];
int n,m,tot,head,tail,l,r,ans;
inline vec link(point a,point b)
{
return (vec){b, a.x - b.x, a.y - b.y,0,0};
}
inline DL cross(vec a,vec b)
{
return a.x * b.y - a.y * b.x;
}
inline bool larger(DL a,DL b)
{
return a - b > eps;
}
inline bool equal(DL a,DL b)
{
return fabs(a - b) <= eps;
}
inline bool smaller(DL a,DL b)
{
return larger(b,a);
}
inline bool onleft(vec a,point b)
{
vec tmp = link(b,a.p);
return larger(cross(a,tmp),0) || equal(cross(a,tmp),0);
}
inline point intersection(vec a,vec b)
{
vec tmp = link(a.p,b.p);
DL t = cross(b,tmp) / cross(a,b);
return (point){a.p.x + t * a.x,a.p.y + t * a.y};
}
inline bool judge(int k)
{
tot = 0;
for (int i = 1; i <= m; i++) if (L[i].id <= k) a[++tot] = L[i];
q[head = tail = 1] = a[1];
for (int i = 2; i <= tot; i++)
{
while (head < tail && !onleft(a[i],p[tail - 1])) tail--;
while (head < tail && !onleft(a[i],p[head])) head++;
q[++tail] = a[i];
if (equal(q[tail].pri,q[tail - 1].pri))
{
tail--;
if (onleft(q[tail],a[i].p)) q[tail] = a[i];
}
if (head < tail) p[tail - 1] = intersection(q[tail],q[tail - 1]);
}
while (head < tail && !onleft(q[head],p[tail - 1])) tail--;
return tail - head > 1;
}
inline bool cmp(vec a,vec b)
{
return smaller(a.pri,b.pri);
}
inline int getint()
{
int ret = 0;
char c = getchar();
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9')
ret = ret * 10 + c - '0',c = getchar();
return ret;
}
int main()
{
n = getint();
for (int i = 1; i <= n; i++)
{
DL x = getint(),y1 = getint(),y2 = getint();
DL k = -x,b = y1 / x;
point p1 = (point){0,b},p2 = (point){1,k + b};
L[++m] = link(p2,p1); L[m].pri = atan2(L[m].y,L[m].x); L[m].id = i;
k = -x; b = y2 / x;
p1 = (point){0,b},p2 = (point){1,k + b};
L[++m] = link(p1,p2); L[m].pri = atan2(L[m].y,L[m].x); L[m].id = i;
}
sort(L + 1,L + m + 1,cmp);
l = 1; r = n;
while (r - l > 1)
{
int mid = l + r >> 1;
if (judge(mid)) l = mid;
else r = mid;
}
if (judge(r)) ans = r;
else ans = l;
printf("%d",ans);
return 0;
}