传送门:bzoj2732
题解
半平面交模板题。卡精度。
经过第 i i i条直线 y i 1 ≤ a x i 2 + b x i ≤ y i 2 y_{i1}\leq ax_i^2+bx_i\leq y_{i2} yi1≤axi2+bxi≤yi2可以转化为 y i 1 x i ≤ a x i + b ≤ y i 2 x i \dfrac{y_{i1}}{x_i}\leq ax_i+b\leq \dfrac{y_{i2}}{x_i} xiyi1≤axi+b≤xiyi2。
边界条件: b = − a x i + y i x i b=-ax_i+\dfrac{y_i}{x_i} b=−axi+xiyi,则 ( a , b ) (a,b) (a,b)可取范围则在这两条 y = ( − x i ) x + y i x i y=(-x_i)x+\dfrac{y_i}{x_i} y=(−xi)x+xiyi直线中,二分答案做半平面交即可。
代码
#include<bits/stdc++.h>
typedef long double ld;
using namespace std;
const int N=3e5+100;
const ld eps=1e-18,inf=1e11;///
int n,ans,tot,Q[N],hd,tl;
struct ar{ld x,ya,yb;}q[N];
struct P{
ld x,y;
P(ld x_=0,ld y_=0):x(x_),y(y_){};
P operator +(const P&ky){return P(x+ky.x,y+ky.y);}
P operator -(const P&ky){return P(x-ky.x,y-ky.y);}
ld operator ^(const P&ky){return x*ky.y-y*ky.x;}
P operator *(const ld&ky){return P(x*ky,y*ky);}
P operator /(const ld&ky){return P(x/ky,y/ky);}
}p[N],ori;
inline int dcmp(ld x){if(fabs(x)<eps) return 0;return x>=eps?1:-1;}
struct L{
P st,dir;ld ang;
L(){};
L(P st_,P ed_){st=st_;dir=ed_-st_;ang=atan2(dir.y,dir.x);}
bool operator <(const L&ky)const{return dcmp(ang-ky.ang)==-1;}
}le[N];
inline bool onlf(L A,P B){return dcmp(A.dir^(B-A.st))>=0;}
inline P insp(L A,L B){
ld aa=A.dir^B.dir,bb=B.dir^(A.st-B.st);
return A.st+A.dir*bb/aa;
}
inline bool check(int lim)
{
int i;ld a,b,c;tot=4;
le[1]=L(P(-eps,eps),P(-eps,inf));le[2]=L(P(-eps,inf),P(-inf,inf));
le[3]=L(P(-inf,inf),P(-inf,eps));le[4]=L(P(-inf,eps),P(-eps,eps));
for(i=1;i<=lim;++i){
a=q[i].x;b=q[i].ya;c=q[i].yb;
le[++tot]=L(P(0,b/a),P(1,(-a*a+b)/a));le[++tot]=L(P(0,c/a),P(-1,(a*a+c)/a));
}
sort(le+1,le+tot+1);
Q[1]=1;hd=tl=1;
for(i=2;i<=tot;++i){
for(;hd<tl && !onlf(le[i],p[tl-1]);--tl);
for(;hd<tl && !onlf(le[i],p[hd]);++hd);
Q[++tl]=i;
if(dcmp(le[i].dir^le[Q[tl-1]].dir)==0){
tl--;if(onlf(le[Q[tl]],le[i].st)) Q[tl]=i;
}
if(hd<tl) p[tl-1]=insp(le[Q[tl-1]],le[Q[tl]]);
}
for(;hd<tl && !onlf(le[Q[hd]],p[tl-1]);--tl);
return (hd+1<tl);
}
int main(){
int i,a,b,c,l,r,mid;scanf("%d",&n);
for(i=1;i<=n;++i){scanf("%d%d%d",&a,&b,&c);q[i].x=a;q[i].ya=b;q[i].yb=c;}
l=1;r=n;for(;l<=r;){mid=(l+r)>>1;check(mid)? l=(ans=mid)+1:r=mid-1;}
printf("%d",ans);
return 0;
}