【BZOJ】2732: [HNOI2012]射箭 -半平面交

传送门:bzoj2732


题解

半平面交模板题。卡精度。

经过第 i i i条直线 y i 1 ≤ a x i 2 + b x i ≤ y i 2 y_{i1}\leq ax_i^2+bx_i\leq y_{i2} yi1axi2+bxiyi2可以转化为 y i 1 x i ≤ a x i + b ≤ y i 2 x i \dfrac{y_{i1}}{x_i}\leq ax_i+b\leq \dfrac{y_{i2}}{x_i} xiyi1axi+bxiyi2

边界条件: b = − a x i + y i x i b=-ax_i+\dfrac{y_i}{x_i} b=axi+xiyi,则 ( a , b ) (a,b) (a,b)可取范围则在这两条 y = ( − x i ) x + y i x i y=(-x_i)x+\dfrac{y_i}{x_i} y=(xi)x+xiyi直线中,二分答案做半平面交即可。


代码

#include<bits/stdc++.h>
typedef long double ld;
using namespace std;
const int N=3e5+100;
const ld eps=1e-18,inf=1e11;///

int n,ans,tot,Q[N],hd,tl;

struct ar{ld x,ya,yb;}q[N];

struct P{
	ld x,y;
	P(ld x_=0,ld y_=0):x(x_),y(y_){};
	P operator +(const P&ky){return P(x+ky.x,y+ky.y);}
	P operator -(const P&ky){return P(x-ky.x,y-ky.y);}
	ld operator ^(const P&ky){return x*ky.y-y*ky.x;}
	P operator *(const ld&ky){return P(x*ky,y*ky);}
	P operator /(const ld&ky){return P(x/ky,y/ky);}
}p[N],ori;

inline int dcmp(ld x){if(fabs(x)<eps) return 0;return x>=eps?1:-1;}

struct L{
	P st,dir;ld ang;
	L(){};
	L(P st_,P ed_){st=st_;dir=ed_-st_;ang=atan2(dir.y,dir.x);}
	bool operator <(const L&ky)const{return dcmp(ang-ky.ang)==-1;}
}le[N];

inline bool onlf(L A,P B){return dcmp(A.dir^(B-A.st))>=0;}
inline P insp(L A,L B){
	ld aa=A.dir^B.dir,bb=B.dir^(A.st-B.st);
	return A.st+A.dir*bb/aa;
}

inline bool check(int lim)
{
	int i;ld a,b,c;tot=4;
	le[1]=L(P(-eps,eps),P(-eps,inf));le[2]=L(P(-eps,inf),P(-inf,inf));
	le[3]=L(P(-inf,inf),P(-inf,eps));le[4]=L(P(-inf,eps),P(-eps,eps));
	for(i=1;i<=lim;++i){
		a=q[i].x;b=q[i].ya;c=q[i].yb;
		le[++tot]=L(P(0,b/a),P(1,(-a*a+b)/a));le[++tot]=L(P(0,c/a),P(-1,(a*a+c)/a));
	}
	sort(le+1,le+tot+1);
	Q[1]=1;hd=tl=1;
	for(i=2;i<=tot;++i){
		for(;hd<tl && !onlf(le[i],p[tl-1]);--tl);
		for(;hd<tl && !onlf(le[i],p[hd]);++hd);
		Q[++tl]=i;
		if(dcmp(le[i].dir^le[Q[tl-1]].dir)==0){
			tl--;if(onlf(le[Q[tl]],le[i].st)) Q[tl]=i;
		}
		if(hd<tl) p[tl-1]=insp(le[Q[tl-1]],le[Q[tl]]);
	}
	for(;hd<tl && !onlf(le[Q[hd]],p[tl-1]);--tl);
	return (hd+1<tl);
}

int main(){
	int i,a,b,c,l,r,mid;scanf("%d",&n);
	for(i=1;i<=n;++i){scanf("%d%d%d",&a,&b,&c);q[i].x=a;q[i].ya=b;q[i].yb=c;}
	l=1;r=n;for(;l<=r;){mid=(l+r)>>1;check(mid)? l=(ans=mid)+1:r=mid-1;}
	printf("%d",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值