原题链接:
codeforces 813C
大意:
A B 在一棵树上,每人轮流移动,B 先走,直到 A 追上 B 为止。
A在 1,B在 x 处。
求最少操作数。每次操作为站立不动或是移动到相邻点。
思路:
问题转换为 A的路径*2,只要满足 A 比 B 先到即可。
所以从 1 和 x 分别跑两次最长路径,储存叶子节点的路径,求 d1[i] >d2[i] 的最大d1[i] 即可。
代码实现:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define mem(s,t) memset(s,t,sizeof(s))
#define D(v) cout<<#v<<" "<<v<<endl
#define inf 0x3f3f3f3f
#define pb push_back
#define pii pair<int,int>
//#define LOCAL
const int MAXN =2e5+10;
int n,x;
vector<int> a[MAXN];
int ret1[MAXN],ret2[MAXN];
void dfs(int x,int y,int path,int *ret){
for(int i=0;i<a[x].size();i++){
if(y==a[x][i]) continue;
dfs(a[x][i],x,path+1,ret);
}
ret[x]=path;
}
int main() {
scanf("%d%d",&n,&x);
for(int i=1;i<=n-1;i++){
int u,v;
scanf("%d%d",&u,&v);
a[u].pb(v);
a[v].pb(u);
}
dfs(1,0,0,ret1);
dfs(x,0,0,ret2);
int ans=0;
for(int i=1;i<=n;i++){
if(ret1[i]>ret2[i]) ans=max(ans,2*ret1[i]);
}
printf("%d\n",ans);
return 0;
}