模拟退火算法之特征选择的python实现(一)

目录

1. 模拟退火算法实现步骤 

2. python实现

3. 实验结果

4. 参考文献


模拟退火算法的基本原理在这里就不一一赘述了, 关于原理,可以参考百度百科博客1博客2

在本节按照基本实现步骤实现模拟退火算法, 对于模拟退火算法的高级封装(类封装), 可以参考模拟退火算法之特征选择的python实现(二)

1. 模拟退火算法实现步骤 

2. python实现

import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error
import scipy.io as sio
from sklearn.model_selection import train_test_split


def get_data_subset(x_data, columns):
    return x_data[:, columns]


def get_initial_solution(feature_size, selected_feature):
    sol = np.arange(feature_size-1)
    np.random.shuffle(sol)
    return sol[:selected_feature]


def get_nei
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值