论“常数的次数是多少?”这一问题的理解

论“常数的次数是多少?”这一问题的理解

我们经常会在各种中学数学试题中看到如下面的类似问题:
a、常数的次数是( )次?
b、6的次数是( )次?
c、(2 ^3) x (a ^2) x (b ^5)的次数是( ) 次?
d、(a ^2) x (b ^5)的次数是( )次?
等等…
从百度搜索的结果是:
重点:常数的次数为零。
我们再来看“次数”这一名词的定义和适用范围:
次数的定义:‌
次数‌在数学中有两种定义:一种是‌单项式的次数,另一种是‌多项式的次数。
次数的适用范围:
次数是针对未知数的。‌ 在数学中,次数这个概念主要用于描述未知数的指数或幂次。

如上所述,即然在数学中“次数”这一数学名词的使用范围被限制在了未知数这个范围之内,为何要在常数中去问“一个常数的次数是多少?”这不在逻辑上产生了冲突吗?我想这可能还在于人类语言和思想的差异以及考虑和分析问题的立场或角度不一样才造成了这类似问题的存在。比如:当次数的适用范围在未知数中,此时你在站在未知数的立场去问上面d项中的问题时就很容易理解,不会产生疑惑。当你站在常数的立场上去问上面a项中的问题是,因为你会按照习惯性思维去看待,首先会想到5 ^1, 3 ^1等这种形式,就会有人认为常数的次数为1;即使你记住了“常数的次数为零”这句话,你也会在脑袋里产生问号?这里好像有点矛盾,于是你想不通。***如果单从“次数的适用范围”来考虑这个问题,那么“常数的次数为零”这句话本身就有问题。***这里似乎可以换一个能让人不会产生歧义的说话“常数没有次数一说”,但这又有点不符合我们通常看到的5 ^1,3 ^1等等这种表示方式(在这种表示方式中常数5和3的次数不就是1吗?),大家记住看待问题的角度和立场是在随着问题本身发生变化的。***当你站在“次数的适用范围”的角度去理解可以认为“常数没有次数一说”,当你站在“通常看到的5 ^1,3 ^1等等这种表示方式”的立场去理解就可以认为常数的次数为1。***但往往我们人类还得遵循约定俗成这个原则,就是鲁迅所说的“世上本无路,走的人多了也就成了路”。这里的“常数的次数为零”你就可以这样理解,说的人多了也就公认了“常数的次数为零”,虽然它违背了“次数的适用范围”,大家也都认为“常数的次数为零”。所以总结如下:
实际上出题的人可能或者仅仅就是想考学生是否记得住“常数的次数是0”这句话。

但是在数学或科技领域来讲严谨是首选项,似乎上面的问题在数学领域的严谨性方面还值得探讨。比如网上有一段视频中显示一个空调师傅在安装空调,拍视频的家主问师傅“请问师傅你是安装空调的吗?”作为一个正常人而言这很搞笑,但是你换个角度去看待这个问题,这段视频是家主拍的,但问问题的人是一个盲人,因为盲人只能听到声音,他看不到场景,问这个问题也就顺理成章了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值