目录
概述
第一次攒机,过程感觉很有趣,遂梳理记录下来。
- 攒机用途
个人工作站,用于深度学习网络模型训练。
安装Win10 & Ubuntu16.04 双系统。
硬件选购
-
1)预算范围
≤2w(实消2.2w) -
2)关键硬件选型
-
GPU
由于攒机目的是用于深度学习网络训练,故先确定GPU型号。在预算范围内,选择当前(2020.2)性价比较高的NVIDIA RTX 2080Ti。考虑到性能、价位和到货时间,最终选择从京东自营采购EVGA NVIDIA RTX 2080Ti。
-
主板
考虑到以后可能会增加GPU数量,所以主板选择采购ASUS PRIME X299-A II主板,最多可支持3块GPU。 -
CPU
考虑到主板所支持的CPU类型,且后期对CPU升级可能不大,故在预算可接受范围内,选择采购i9-9940X。
-
-
3)其他配件选型
-
机箱
选择海盗船Air540,深度学习攒机常选机箱。 -
电源
2080Ti 显卡建议的电源功率为650W以上,所以选了SEASONIC FOCUS GX750,功率为750W,Gold。现阶段已够用,后期若增加GPU数量,需换更大功率电源。
-
散热器
选择海盗船h100i 散热器,240mm. 商家说够所选CPU用。 -
内存
由于所选主板最高支持不到3000频速,故选择海盗船DDR4 3200 16GB台式机内存条,采购两件。后期有需要再扩展。
-
硬盘
所选主板支持M.2接口,故选择西部数据1T M.2接口固态硬
-