# CodeForces - 578B "Or" Game

 Time Limit: 2000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u

Description

You are given n numbers a1, a2, ..., an. You can perform at most k operations. For each operation you can multiply one of the numbers by x. We want to make  as large as possible, where  denotes the bitwise OR.

Find the maximum possible value of  after performing at most k operations optimally.

Input

The first line contains three integers nk and x (1 ≤ n ≤ 200 0001 ≤ k ≤ 102 ≤ x ≤ 8).

The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).

Output

Output the maximum value of a bitwise OR of sequence elements after performing operations.

Sample Input

Input
3 1 2
1 1 1

Output
3

Input
4 2 3
1 2 4 8

Output
79


Hint

For the first sample, any possible choice of doing one operation will result the same three numbers 112 so the result is .

For the second sample if we multiply 8 by 3 two times we'll get 72. In this case the numbers will become 12472 so the OR value will be 79 and is the largest possible result.

Source

#include <bits/stdc++.h>
#include <climits>
using namespace std;
const int maxn = 2 * 1e5 +10;
long long n,k,x;
long long a[maxn];
long long pre[maxn],tail[maxn];
int main(){
while(~scanf("%I64d%I64d%I64d",&n,&k,&x)){
memset(pre,0,sizeof(pre));
for(int i=1;i<=n;i++)
scanf("%I64d",a + i),pre[i] = pre[i-1] | a[i];
for(int i=n;i>=1;i--)
tail[i] = tail[i+1] | a[i];
long long x1 = x;
for(int i=2;i<=k;i++)
x *= x1;
long long ans = 0;
for(int i=1;i<=n;i++){
long long temp = x * a[i];
ans = max (ans ,temp | tail[i+1] | pre[i-1]);
}
printf("%I64d\n",ans);
}
return 0;
}


10-09 277

10-08 218

10-12 275

09-22 538

07-24 103

05-22 14

02-26 339

05-27 1522

04-15 408

04-15 455