7 - 整数反转
给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转。
注意:假设我们的环境只能存储得下 32 位的有符号整数,则其数值范围为 [−231, 231 − 1]。请根据这个假设,如果反转后整数溢出那么就返回 0。
class Solution:
def reverse(self, x: int) -> int:
flag = False #判断符号,如果是负数设置为True
if x < 0 :
flag = True
x = -x
q = [] #用列表存储输入数字的各个位数的数字
while x > 0: #终止循环的条件是x=0
q.append(int(x%10)) #利用取余操作获取最后的一位数
x = int(x//10) #利用取整操作排除最后一位数
ans = 0
while q:
ans = ans*10 + q.pop(0)
if flag:
if ans > 2**31:
return 0
else:
return -ans
else:
if ans > 2**31 - 1:
return 0
else:
return ans
利用取余和取整获取各个位数并添加到队列q,再依次出队并组合成最终结果。
class Solution:
def reverse(self, x: int) -> int:
flag = False #用于判断x的正负以便后面分类讨论
if x < 0:
flag = True
x = -x
reNum = 0
while x > 0:
reNum = reNum*10 + x%10
x = x//10
if flag:
if reNum > 2**31:
return 0
else:
return -reNum
else:
if reNum > 2**31-1:
return 0
else:
return reNum
借鉴了 9 - 回文数 的思路,直接定义一个逆序数,可以通过x求出来,最后别忘了判断范围。
9 - 回文数
判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
class Solution:
def isPalindrome(self, x: int) -> bool:
if x < 0:
return False
q = []
while x > 0:
q.append(x%10)
x = x//10
while len(q) > 1:
if q.pop(0) != q.pop(-1):
return False
return True
用一个列表维护整数x的所有数字。
依次出队列表左右两端的数字并比较,若不同,则直接返回False,直到列表里只剩下一个或零个元素。
注意若x为负数,那么一定是False
class Solution:
def isPalindrome(self,x:int)->bool:
s = str(x)
l = len(s)
h = l//2
return s[:h] == s[-1:-h-1:-1]
这是官方答案,非常简洁,直接转成字符串,厉害。
class Solution:
def isPalindrome(self, x: int) -> bool:
if x < 0:
return False
reNum = 0
y = x
while x > 0:
reNum = reNum*10 + x%10
x = x//10
return y == reNum
这个是看了答案之后有的思路,可以直接求逆序数,例如345的逆序数就是543,求逆序数的步骤其实还是利用取余和取整操作,其实就是不断的给x对10取余的结果乘10
8 - 字符串转换整数 (atoi)
请你来实现一个 atoi 函数,使其能将字符串转换成整数。
首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止。接下来的转化规则如下:
如果第一个非空字符为正或者负号时,则将该符号与之后面尽可能多的连续数字字符组合起来,形成一个有符号整数。
假如第一个非空字符是数字,则直接将其与之后连续的数字字符组合起来,形成一个整数。
该字符串在有效的整数部分之后也可能会存在多余的字符,那么这些字符可以被忽略,它们对函数不应该造成影响。
假如该字符串中的第一个非空格字符不是一个有效整数字符、字符串为空或字符串仅包含空白字符时,则你的函数不需要进行转换,即无法进行有效转换。
在任何情况下,若函数不能进行有效的转换时,请返回 0 。
注意:本题中的空白字符只包括空格字符 ’ '。假设我们的环境只能存储 32 位大小的有符号整数,那么其数值范围为 [ − 2 31 −2^{31} −231, 2 31 − 1 2^{31} − 1 231−1]。如果数值超过这个范围,请返回 2 31 − 1 2^{31} − 1 231−1 或 − 2 31 −2^{31} −231 。
class Solution:
def myAtoi(self, s: str) -> int:
num = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']
sign = ['+', '-']
target = '0'
#遍历整个字符串
for j in range(len(s)):
if (s[j] not in num) and (s[j] not in sign) and (s[j] != ' '):
return 0
elif s[j] in sign:
if j < len(s)-1 and s[j+1] in num:
target = s[j]
i = j+1
while s[i] in num:
target += s[i]
i += 1
if i >= len(s):
break
break
else: #这里如果不写这个else语句,会导致循环继续,对于'+-12'这样的事例就会输出错误的结果
return 0
elif s[j] in num:
target = ''
i = j
while s[i] in num:
target += s[i]
i += 1
if i >= len(s):
break
break
else:
pass
#判断输出数的取值范围
if int(target) < -2**31:
return -2**31
elif int(target) > 2**31 - 1:
return 2**31 - 1
else:
return int(target)
题不难,坑挺多,注意避免各种条件的坑吧。
INT_MAX = 2**31 - 1
INT_MIN = 2**31
class fsm:
def __init__(self):
self.state = 'start'
self.sign = True #用True和False表示符号
self.ans = 0
self.table = {'start':['start', 'sign', 'num', 'end'],
'sign':['end', 'end', 'num', 'end'],
'num':['end', 'end', 'num', 'end'],
'end':['end', 'end', 'end', 'end']
}
def get_state(self, s):
if s.isspace():
return 0
elif s == '+' or s == '-':
return 1
elif s.isdigit():
return 2
else:
return 3
def solve(self, ss):
self.state = self.table[self.state][self.get_state(ss)]
if self.state == 'sign' and ss == '-':
self.sign = False
if self.state == 'num':
self.ans = self.ans*10 + int(ss)
self.ans = min(INT_MAX, self.ans) if self.sign else min(INT_MIN, self.ans)
class Solution:
def myAtoi(self, str: str) -> int:
atoi = fsm()
for c in str:
atoi.solve(c)
if atoi.sign:
return atoi.ans
else:
return -atoi.ans
通过答案中的题解三种方法(正常遍历,有限状态机,正则表达式)三种语言(c++,java,python求解)学习到的有限状态机方法,拓展了思路,有意思。在直接解法中我写判断都要写吐了。
维护一个fsm类,表示finite state machine:
- 属性有当前状态,当前符号,当前结果(当前转化的整数)和记录状态转移的表格(用字典表示);
- 方法有获取当前字符的序号(以便查表得到转移后的状态)get_state,以及根据当前字符更新属性的solve
在Solution类中的myAtoi方法里,只需要实例化fsm为atoi,并遍历给定字符串str一次,然后根据atoi.sign和atoi.ans得到最终结果就行了。