DFS(深度优先搜索)与BFS(广度优先搜索)

写在最前的三点:

1、所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次

2、实现bfs和dfs都需要解决的一个问题就是如何存储图。一般有两种方法:邻接矩阵和邻接表。这里为简单起见,均采用邻接矩阵存储,说白了

也就是二维数组。

3、本文章的小测试部分的测试实例是下图:

一、深度优先搜索遍历

1、从顶点v出发深度遍历图G的算法

① 访问v

② 依次从顶点v未被访问的邻接点出发深度遍历。

2、一点心得:dfs算法最大特色就在于其递归特性,使得算法代码简洁。但也由于递归使得算法难以理解,原因在于递归使得初学者难以把握程序

运行到何处了!一点建议就是先学好递归,把握函数调用是的种种。

3、算法代码:

#include<iostream>
using namespace std;

int a[11][11];
bool visited[11];

void store_graph()  //邻接矩阵存储图
{
	int i,j;

	for(i=1;i<=10;i++)
		for(j=1;j<=10;j++)
			cin>>a[i][j];
}

void dfs_graph()    //深度遍历图
{
	void dfs(int v);

	memset(visited,false,sizeof(visited));

	for(int i=1;i<=10;i++)  //遍历每个顶点是为了防止图不连通时无法访问每个顶点
		if(visited[i]==false)
			dfs(i);
}

void dfs(int v)  //深度遍历顶点
{
	int Adj(int x);

	cout<<v<<" ";  //访问顶点v
	visited[v]=true;

	int adj=Adj(v);
	while(adj!=0)
	{
		if(visited[adj]==false)   
			dfs(adj);      //递归调用是实现深度遍历的关键所在

		adj=Adj(v);
	}
}

int Adj(int x)   //求邻接点
{
	for(int i=1;i<=10;i++)
		if(a[x][i]==1 && visited[i]==false)
			return i;

	return 0;
}

int main()
{
	cout<<"初始化图:"<<endl;
	store_graph();

	cout<<"dfs遍历结果:"<<endl;
	dfs_graph();

	return 0;
}

4、小测试

二、广度优先搜索遍历

1、从顶点v出发遍历图G的算法买描述如下:

①访问v

②假设最近一层的访问顶点依次为vi1,vi2,vi3...vik,则依次访问vi1,vi2,vi3...vik的未被访问的邻接点

③重复②知道没有未被访问的邻接点为止

2、一点心得:bfs算法其实就是一种层次遍历算法。从算法描述可以看到该算法要用到队列这一数据结构。我这里用STL中的<queue>实现。

该算法由于不是递归算法,所以程序流程是清晰的。

3、算法代码:

#include<iostream>
#include<queue>    
using namespace std;

int a[11][11];
bool visited[11];

void store_graph()  
{
	for(int i=1;i<=10;i++)
		for(int j=1;j<=10;j++)
			cin>>a[i][j];
}

void bfs_graph()    
{
	void bfs(int v);

	memset(visited,false,sizeof(visited));

	for(int i=1;i<=10;i++)  
		if(visited[i]==false)
			bfs(i);
}

void bfs(int v)
{
	int Adj(int x);

	queue<int> myqueue;
	int adj,temp;

	cout<<v<<" ";
	visited[v]=true;
	myqueue.push(v);

	while(!myqueue.empty())    //队列非空表示还有顶点未遍历到
	{
		temp=myqueue.front();  //获得队列头元素
		myqueue.pop();         //头元素出对

		adj=Adj(temp);
		while(adj!=0)
		{
			if(visited[adj]==false)
			{
				cout<<adj<<" ";
				visited[adj]=true;
				myqueue.push(adj);   //进对
			}

			adj=Adj(temp);
		}
	}
}

int Adj(int x)   
{
	for(int i=1;i<=10;i++)
		if(a[x][i]==1 && visited[i]==false)
			return i;

	return 0;
}

int main()
{
	cout<<"初始化图:"<<endl;
	store_graph();

	cout<<"bfs遍历结果:"<<endl;
	bfs_graph();

	return 0;
}

4、小测试:




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值