高数-导数的应用--函数凹凸性与拐点

本文介绍了函数凹凸性与拐点的定义,强调拐点必须是连续函数的点,而极值点不一定是连续的。并提供了一种判定方法,包括确定定义域、寻找驻点和一阶、二阶导数,通过这些信息分析函数的单调性和凹凸区间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、定义

在这里插入图片描述在这里插入图片描述
注:1、拐点是一个点,极值点、驻点仅有横坐标的值
2、极值点不一定是函数的连续点,拐点一定是连续函数的点。

二、判定
在这里插入图片描述

-----------------------------------------------------习题----------------
1、
求函数的单调性,极值;凹凸区间,拐点
在这里插入图片描述
(1)求定义域:取不到的点可以此分段
(2)求一阶导和二阶导的驻点,并以此分段
(3)根据函数的单调性,凹凸性填表
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值