OpenAI GPT o1技术报告阅读(4)- 填字游戏推理

✨继续阅读报告:使用大模型来学习推理(Reason)

原文链接:https://openai.com/index/learning-to-reason-with-llms/

这次我们继续看一个填字游戏的案例。

 我们先看下问题:

解决以下填字游戏:

Across(横向):
1 Evade  中文:躲避

2 One to close envelopes  中文:封信封的工具

3 Mother ______  中文:母亲______

4 Initiated people  中文:启蒙人们

5 Native American tent  中文:美洲原住民的帐篷

6 Mistakes  中文:错误

Down(纵向):
1 ______ car (Station wagon)  中文:______车(旅行车)

2 Automatic planting machine  中文:自动种植机

3 Profession  中文:职业

4 Syrian and Turkish pepper variety  中文:叙利亚和土耳其的辣椒品种

5 Annoy  中文:烦恼

6 Deletes  中文:删除

先看下GPT4o的回答:

Let’s solve the crossword using the provided clues.

Across:

  1. Evade - Dodge

  2. One to close envelopes - Sealer

  3. Mother ______ - Motherland

  4. Initiated people - Insiders

  5. Native American tent - Tepee

  6. Mistakes - Errors

Down:

  1. ______ car (Station wagon) - Family

  2. Automatic planting machine - Seeder

  3. Profession - Career

  4. Syrian and Turkish pepper variety - Aleppo

  5. Annoy - Irritate

  6. Deletes - Erases

Here’s how the crossword would look filled in:

【小梦备注:emm,一眼错误,也不需要逐行翻译了,基本它把这题目当成一个寻找近似词了,几乎完全没有管字符数量和字符之间关系的事情了。】

接下来是OpenAI O1 preview上场。

首先是CoT部分:

我们被要求解决这个填字游戏谜题。

让我们首先理解这个格子:

- 这是一个6x6的格子,从1到11的位置编号如下:

【小梦备注:首先读了一遍题目,仔细审题并尝试理解结构,是个好习惯。】

所以横向的条目编号为1到6,纵向的条目从1到11。

但实际上,线索是:

横向

### 比较OpenAI GPT-4GPT-4o模型 #### 特征差异 GPT-4代表了OpenAI在大型语言模型技术上的最新进展,具有更高的参数量和改进的架构设计,旨在提供更为流畅自然的语言理解和生成能力。相比之下,关于GPT-4o的信息较少,通常认为这是针对特定优化版本或是内部使用的变体之一[^1]。 #### 性能对比 具体到性能方面,在公开资料中并没有直接提及GPT-4o的具体评测数据。然而,基于一般模式,可以推测GPT-4o可能是在原有基础上做了针对性调整或优化,比如提升了某些应用场景下的效率或者降低了资源消耗等特性。而标准版GPT-4则经过大规模预训练并广泛应用于多种任务场景,其泛化能力和适应范围更加广阔。 #### 应用领域 由于缺乏详细的官方说明文档来描述两者之间的区别,对于想要深入了解两者的不同之处以及各自适用场景的人来说存在一定难度。但从逻辑推断来看,如果存在所谓的"GPT-4o"版本,则很可能是为了满足特殊需求而定制开发出来的分支版本;它或许会在特定行业应用中有更好的表现,或者是专门为某类计算环境进行了适配性改造。 ```python # 这里仅展示如何通过Python代码加载两个假设存在的模型进行简单推理演示, # 实际操作需依据实际可用API接口编写相应程序。 import transformers as trf model_name_4 = "openai/gpt-4" tokenizer_4 = trf.AutoTokenizer.from_pretrained(model_name_4) model_4 = trf.AutoModelForCausalLM.from_pretrained(model_name_4) # 假设GPT-4o也存在于Hugging Face Model Hub中 model_name_4o = "openai/gpt-4o" tokenizer_4o = trf.AutoTokenizer.from_pretrained(model_name_4o) model_4o = trf.AutoModelForCausalLM.from_pretrained(model_name_4o) text_input = ["Tell me about the weather today."] input_ids_4 = tokenizer_4(text_input, return_tensors="pt").input_ids output_4 = model_4.generate(input_ids_4) input_ids_4o = tokenizer_4o(text_input, return_tensors="pt").input_ids output_4o = model_4o.generate(input_ids_4o) print(f'Output from GPT-4:\n{tokenizer_4.decode(output_4[0], skip_special_tokens=True)}') print(f'\nOutput from GPT-4o:\n{tokenizer_4o.decode(output_4o[0], skip_special_tokens=True)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聚梦小课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值