Comfyui插件CLIPSeg应该如何安装

本文介绍了GitHub上的ComfyUI-CLIPSeg插件在安装过程中遇到的问题,包括错误信息、解决步骤,以及如何通过Git克隆和手动操作进行安装。作者还分享了其相关课程链接,供读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✨背景

GitHub - biegert/ComfyUI-CLIPSeg: ComfyUI CLIPSeg

Comfyui-CLIPSeg是一个相对没那么大众的插件,在基于语义分割和自动抠图方面,还是比较实用的一个插件。但是插件安装起来,跟普通的插件安装有亿点不一样,所以很多小朋友可能会无从下手。

这里简单分享一下报错情况和具体的安装方法。如果你比较赶时间,可以直接跳转到具体解决方案部分。

🥽报错信息回顾

如果直接使用comfyui的插件管理器来安装,点击install之后,会直接给个报错信息。

点击查看后台,会发现这个插件直接没找到合适的路径。

如果尝试使用秋叶的安装扩展插件,会发现没有这个插件。

这个时候,就有些小朋友给整不会了,没关系,接下来我们就来看下如何安装这个插件。

🛫解决方案

首先,进入你的comfyui下的custom_nodes文件夹下,点击右键,点击Open Git Bash here,进入Git命令行模式。

PS:如果没有,请先自行安装git。

然后,“在保证网络畅通的情况下”,输入以下命令行将git复制到这个插件目录下:

git clone https://github.com/biegert/ComfyUI-CLIPSeg.git

如果提示网络连接失败,请仔细检查自己的网络。

问题是到这里还没有结束,大概原插件作者的地址,会看到这么一句温馨提示:

emm...是个不走寻常路的作者呢。

所以你需要找到这个文件:

然后复制到custom_nodes根目录下:

然后再重新启动Comfyui就完成了插件安装。

如果对你有帮助的话,记得帮忙点个赞哦...写了这么久blog,都不知道大家看不看...

 🎉写在最后~

去年的时候写了两门比较基础的Stable Diffuison WebUI的基础文字课程,大家如果喜欢的话,可以按需购买,在这里首先感谢各位老板的支持和厚爱~

✨StableDiffusion系统基础课(适合啥也不会的朋友,但是得有块Nvidia显卡):

https://blog.csdn.net/jumengxiaoketang/category_12477471.html

​​🎆综合案例课程(适合有一点基础的朋友):

https://blog.csdn.net/jumengxiaoketang/category_12526584.html

​​

这里是聚梦小课堂,就算不买课也没关系,点个关注,交个朋友😄

### ComfyUI 局部重绘工作流实现与配置 #### 使用 VAE 内补编码器进行局部重绘 在 ComfyUI 中,一种简单的局部重绘方法是利用 VAE (Variational Autoencoder) 的内补编码器功能。这种方法允许用户指定图像中的某些区域作为修复目标,并通过模型自动填充这些区域的内容。 为了使用此方法,需准备一张带有遮罩层的输入图片,其中白色部分表示要保留的原始像素而黑色则标记待修补之处。之后加载预训练好的 VAE权重并调用相应的 API 接口完成处理过程[^2]。 ```python from comfyui import load_vae, apply_inpainting_with_vae # 加载VAE模型 vae_model = load_vae('path_to_pretrained_vae') # 应用局部重绘 result_image = apply_inpainting_with_vae(input_image_path='input.png', mask_image_path='mask.png') ``` #### 利用 Fooocus Inpaint 进行局部重绘 另一种途径就是采用专门设计用于图像修复的任务型工具——Fooocus inpaint 。它能够更精准地理解和重建受损部位纹理特征,从而获得更加自然逼真的效果。 操作上同样依赖于提供含掩码图样的源素材;不同的是这里会涉及到特定参数设置来指导算法如何更好地理解场景上下文关系以便做出最优决策. ```python from fooocus.inpaint import perform_inpainting output_img = perform_inpainting(image_file="source.jpg", mask_file="mask.bmp") ``` #### ControlNet 插件支持下的局部重绘方案 ControlNet 是一款强大的神经网络框架扩展组件,其内置有针对语义分割任务优化过的 inpaint 模型。借助该模块不仅可以高效解决大面积缺失情况还能保持整体风格一致性。 具体来说就是在常规流程基础上引入额外条件信息引导生成过程,比如边缘轮廓线或是颜色提示等辅助线索帮助系统构建更为合理的假设空间进而提升最终输出质量. ```python import controlnet as cn cn.set_input(img='image_for_editing.png', hint='additional_guidance_info.txt') repaired_image = cn.run_inpaint() ``` #### Clip Seg 蒙版插件的应用实例 最后介绍基于剪辑片段分析技术开发而成的自动化蒙板创建解决方案 —— Clip seg。它可以快速准确地标记出感兴趣的对象范围形成二值化掩模供后续编辑步骤使用。对于那些难以手动绘制精确边界的情况特别有用处。 只需上传待处理照片至平台界面即可自动生成对应选区,随后按照前述任一方式进行实际修改操作即可达成目的. ```python from clipseg import create_mask_from_clip_segmentation mask = create_mask_from_clip_segmentation(image='photo_of_interest.jpeg') final_result = some_other_method(image='original_photo.png', mask=mask) ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聚梦小课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值