👓实际加速效果
使用4090显卡,用flux生成一张1024x1024分辨率的图像,只需要不到3秒的时间。
除了第一次生成较慢以外,从第二次开始,生成速度都在2.5秒以内,这个速度可以说是效果拔群了,而且还可以正常使用flux的lora,支持dev模型、canny、depth、redux等flux官方tools也都很好的支持,所以强烈建议升级一下。
✨安装指南
首先,需要看下自己的安装包中pytorch和python的版本是多少。
查看的方法是在启动的时候,后台页面中最顶部有python版本和pytorch的版本号,如下图,我的python版本就是3.12.7,pytorch版本就是2.5.1。
如果pytorch版本是小于2.5版本,那么需要先升级。(升级方法这篇文章就不讲了)
第二步,根据刚才的版本号,到这个页面下载对应的wheel文件:
https://modelscope.cn/models/Lmxyy1999/nunchaku/files
比如说我刚才的版本是2.5+3.12,系统是windows系统,所以下载这个版本就可以了,如果你的版本不一样,一定要下载对应的版本型号(torch版本+python版本+系统型号)
第三步,下载完成后,将下载好的whl文件放在python虚拟环境下,比如说我的就放在了python_embeded文件夹下,如果是秋叶等第三方包装的版本,请自行寻找对应的路径。
当然,这里也可以放在别的文件夹下,只是会影响后续的操作步骤,所以如果是小白用户,建议就一步步跟着来就好了。
第四步,在地址栏输入cmd并回车:
打开的页面里边输入:
python -m pip install "nunchaku-0.2.0+torch2.5-cp312-cp312-win_amd64.whl"
注意,引号里边要替换成你下载的版本的文件名称。
然后回车。
第五步,耐心等待安装完成后,打开comfyui。
打开manager,安装自定义插件,搜索nunchaku,找到以下插件,并安装。(注意,这里可能需要保持网络畅通。)
(我这里已经安装了,如果没有安装,点击 install按钮安装即可)
安装完成后重启comfyui。
第六步,至于如何使用,官方其实已经内置了大量基础工作流,就在插件目录下的workflow文件夹下。
第七步,注意,打这里还不能正常使用,需要下载新的量化模型,为了照顾网络不好的同学,这里已经把最常用的几个模型打包放在了网盘:https://pan.quark.cn/s/e884afde4b4c
首先将这四个大模型,放在\ComfyUI\models\diffusion_models文件夹下:
注意,务必连同文件夹一起放进去,最好不要改文件夹名称。
然后将这两个lora文件放在loras文件夹下。
如:
其中,flux这层的文件夹可以不放,我这里只是为了区分不同版本的lora,所以加了flux这一层文件夹。
flux.1-turbo lora是用来加速的,非必须,实例workflow中用到了,防止大家找不到,所以这里也放了一个。
diffuers-ghibsky-illustration_v2 lora,是吉卜力工作室画风的一个lora,放在这里,也是因为官方的实例中用到了,防止大家不好找,这里备份了一份。按需下载即可
如果想要下载别的版本的模型,也可以到魔塔社区去下载:
https://modelscope.cn/collections/svdquant-468e8f780c2641
第八步,到这里,就可以刷新comfyui(或者重启也行),手工选择一下默认没找到的模型,然后正常运行加速版本的工作流了。
如果对你有帮助,还请帮忙点个赞,谢谢额
✨写在最后
面向ComfyUI的新手,有一门系统性入门图文课程内容主要包括如何下载软件、如何搭建自己的工作流、关键基础节点讲解、遇到报错怎么解决等等,如果大家在学习过程中遇到什么问题,也可以直接对应的文章下留言,会持续更新相关答疑内容哈。欢迎订阅哦~
https://blog.csdn.net/jumengxiaoketang/category_12683612.html
感谢大家的支持~
还有早些时候写了两门比较基础的Stable Diffuison WebUI的基础文字课程,大家如果喜欢的话,可以按需购买,在这里首先感谢各位老板的支持和厚爱~
✨StableDiffusion系统基础课(适合啥也不会的朋友,但是得有块Nvidia显卡):
https://blog.csdn.net/jumengxiaoketang/category_12477471.html
🎆综合案例课程(适合有一点基础的朋友):
https://blog.csdn.net/jumengxiaoketang/category_12526584.html-