R统计模拟

本文通过二项分布模拟验证了中心极限定理,并利用正态概率图来判断随机数是否符合正态分布。首先,使用R语言生成大量二项分布随机数并标准化,展示其与标准正态分布的逼近情况;接着,通过不同分布类型的正态概率图进行直观比较。

统计模拟

1.用二项分布检验中心极限定理

假如

zBnomial(n,p)

x=znpnp(1p)
n <- 15;p <- 0.45  # 给定n p
z <- rbinom(10000,n,p) # 产生10000个二项分布随机数
x <- (z-n*p)/sqrt(n*p*(1-p)) # 标准化
hist(x,probability = T,col=gray(.9))  # 绘制x的概率直方图
curve(dnorm(x,0,1),add=T) #添加标准正态分布曲线

结果如下图:
两者还是很接近的

这里写图片描述

2.正态概率模拟

正态概率图能比直方图更好的判定随机数是否近似服从正态分布。

R中使用qqnorm()绘制正态概率图 使用qqline()添加参考线

> par(mfrow=c(2,2))
> x=rnorm(100,0,1);qqnorm(x,main="N(0,1)");qqline(x)
> x=rnorm(100,10,25);qqnorm(x,main="N(10,25)");qqline(x)
> x=rexp(100,1/10);qqnorm(x,main="exp(0.1)");qqline(x)
> x=runif(100,0,1); qqnorm(x,main="U(0,1)");qqline(x)
> 结果如下图:

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值