【C++游戏引擎开发】第25篇:方差阴影贴图(VSM,Variance Shadow Maps)

一、VSM 的核心思想

1.1 VSM 的核心思想

1.1.2 从深度到概率的转变

VSM 的核心创新在于将阴影判定从深度比较转换为概率估算。通过存储深度分布的统计信息(均值和方差),利用概率不等式动态计算阴影强度,从而支持软阴影并减少锯齿。

1.1.3 深度分布的统计表示

VSM 在阴影贴图中存储两个通道:

  1. 一阶矩(均值)​ μ = 1 n ∑ i = 1 n d i \mu = \frac{1}{n} \sum_{i=1}^{n} d_i μ=n1i=1ndi
  2. 二阶矩(平方均值)​ μ 2 = 1 n ∑ i = 1 n d i 2 \mu_2 = \frac{1}{n} \sum_{i=1}^{n} d_i^2 μ2=n1i=1ndi2
    其中, d i d_i di 表示光源视角下某像素的深度值。

通过这两个值可计算方差 Var = μ 2 − μ 2 \text{Var} = \mu_2 - \mu^2 Var=μ2μ2

1.2 数学基础:切比雪夫不等式

1.2.1 概率不等式定义

切比雪夫不等式(Chebyshev’s Inequality)用于估算随机变量 d d d 超过某阈值 t t t 的概率:
P ( d ≥ t ) ≤ Var Var + ( t − μ ) 2 P(d \geq t) \leq \frac{\text{Var}}{\text{Var} + (t - \mu)^2} P(dt)Var+(tμ)2Var

1.2.2 阴影强度计算

在 VSM 中,当前片段到光源的深度为 t t t,阴影强度定义为该深度被遮挡的概率:
Shadow = P ( d ≤ t ) = 1 − P ( d ≥ t ) \text{Shadow} = P(d \leq t) = 1 - P(d \geq t) Shadow=P(dt)=1P(dt)
因此:
Shadow ≈ Var Var + ( t − μ ) 2 \text{Shadow} \approx \frac{\text{Var}}{\text{Var} + (t - \mu)^2} ShadowVar+(tμ)2Var

1.3 VSM 的优势与局限性

1.3.1 核心优势
  1. 软阴影支持:通过概率估算自动生成半影效果,无需手动模糊。
  2. 抗锯齿能力:方差计算平滑了深度跳变,减少边缘锯齿。
  3. 抗漏光优化:方差修正缓解了深度不连续导致的漏光问题。
  4. 高效性:相比 PCF 的多重采样,VSM 仅需一次纹理查询。
1.3.2 技术挑战
  1. 存储开销:需要双通道浮点纹理(例如 GL_RG32F)。
  2. 过度模糊:在深度分布复杂的区域(如树枝、栅栏),阴影可能过度模糊。
  3. 数值稳定性:方差计算需避免负数(通过钳制或插值修正)。

1.5 VSM 的适用场景

  1. 动态光源:适用于需要实时更新阴影贴图的场景。
  2. 柔和光照:室内灯光、自然光照等需要软阴影的环境。
  3. 中高性能硬件:依赖浮点纹理和双通道渲染能力。

二、实战示例

贴图下载见:【C++游戏引擎开发】第15篇:OpenGL中的纹理加载

2.1 核心代码

#version 460 core
out vec4 FragColor; // 最终输出颜色

in VS_OUT {
   
    vec3 FragPos;    // 输入的世界坐标
    vec3 Normal;     // 输入的法线
    vec2 TexCoords;  // 输入的纹理坐标
    vec4 FragPosLightSpace; // 灯光空间坐标
} fs_in;

uniform sampler2D diffuseTexture; // 漫反射纹理
uniform sampler2D shadowMap;      // 阴影贴图

uniform vec3 lightPos;    // 光源位置
uniform vec3 viewPos;     // 摄像机位置

// 阴影计算函数
float ShadowCalculation(vec4 fragPosLightSpace) {
   
    // 透视除法转换到NDC坐标
    vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
    // 从[-1,1]转换到[0,1]范围
    projCoords = projCoords * 0.5 + 0.5;
    
    // 超出阴影贴图范围的区域不产生阴影
    if(projCoords.z > 1.0 || projCoords.z < 0.0)
        return 0.0;
        
    // 从阴影贴图读取深度矩(R通道存储深度,G通道存储深度平方)
    vec2 moments = texture(shadowMap, projCoords.xy).rg;
    float currentDepth = projCoords.z; // 当前片段深度
    
    // 计算方差(E(x²) - E(x)^2)
    float variance = moments.y - (moments.x * moments.x);
    variance = max(variance, 0.00002); // 防止方差为负
    
    // 计算深度差
    float d = currentDepth - moments.x;
    if(d < 0.0) // 当前深度小于平均深度,说明未被遮挡
        return 0.0;
        
    // 使用切比雪夫不等式计算阴影概率
    float p = (d * d) / (variance + d * d);
    return clamp(p, 0.0, 1.0); // 返回阴影强度
}

void main() {
              
    vec3 color = texture(diffuseTexture, fs_in.TexCoords).rgb; // 采样纹理颜色
    vec3 normal = normalize(fs_in.Normal); // 归一化法线
    
    // 漫反射计算
    vec3 lightDir = normalize(lightPos - fs_in.FragPos); // 光源方向
    float diff = max(dot(lightDir, normal), 0.0);       // 漫反射强度
    vec3 diffuse = diff * vec3(1.0);                     // 漫反射颜色
    
    // Blinn-Phong高光计算
    vec3 viewDir = normalize(viewPos - fs_in.FragPos);    // 视线方向
    vec3 halfwayDir = normalize(lightDir + viewDir);      // 半角向量
    float spec = pow(max(dot(normal, halfwayDir), 0.0), 64.0); // 高光强度
    
    // 阴影计算
    float shadow =<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JuicyActiveGilbert

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值