斯坦福大学资源

斯坦福大学网站:https://cs.stanford.edu/courses/schedules/2017-2018.autumn.php



CourseTitleInstructorTimeRoom
cs1CIntroduction to Computing at StanfordSmithby arrangement
cs1UPractical UnixZelenski/SarkaTTh 1:30-2:50STLC 104
cs7Personal Finance for EngineersNashT 4:30-5:50200-034
cs9Problem-solving for the CS Technical InterviewCain/LeeT 3:00-4:50STLC 111
cs28AI, Entrepreneurship & Society in 21st Cntry & BeyGanguli/TanejaM 4:30-5:50HerrinT175
cs45NComputers and Photography: From Capture to SharingGarcia-MolinaMW 2:30-4:20Gates 505
cs50Using Tech for GoodCainMWF 12:30-1:20STLC115
cs56NGreat Discoveries and Inventions in ComputingHennessyTTh 9:00-10:20STLC118
cs102Big Data: Tools & Techniques, Discoveries & PitfalWidomTTh 1:30-2:50320-105
cs103Mathematical Foundations of ComputingSchwarzMWF 3:00-4:20Nvidia Aud
cs103AMathematical Problem-solving StrategiesSchwarzT 3:00-5:50STLC115
cs105Introduction to ComputersYoungMWF 1:30-2:20HerrinT175
cs106AProgramming MethodologySahamiMWF 1:30-2:20Hewlett200/201
cs106AJProgramming Methodology in JavaScriptCainMWF 10:30-11:20300-300
cs106BProgramming AbstractionsLeeMWF 12:30-1:20Nvidia Aud
cs106XProgramming Abstractions (Accelerated)SteppMWF 12:30-1:20420-041
cs107Computer Organization and SystemsZelenski/GreggMF 1:30-2:50CubberleyAud
cs108Object-Oriented Systems DesignYoungMW 3:00-4:20530-127
cs109Intro to Probability for Computer ScientistsPiechMWF 3:30-4:20Hewlett200
cs110Principles of Computer SystemsCainMWF 1:30-2:50Skilling Aud
cs131Computer Vision: Foundations and ApplicationsNiebles Duque/TTh 1:30-2:50200-002
cs142Web ApplicationsRosenblumMWF 10:30-11:20200-002
cs144Introduction to Computer NetworkingLevis/McKeownMW 3:00-4:20Skilling Aud
cs145Introduction to DatabasesBailisTTh 3:00-4:20Nvidia Aud
cs146Introduction to Game Design and DevelopmentJames/Riedel-KTTh 4:30-5:50380-380C
cs147Introduction to Human-Computer Interaction DesignLandayMW 11:30-1:20Hewlett 201
cs148Introduction to Computer Graphics and ImagingFedkiwTTh 12:00-1:20Nvidia Aud
cs154Introduction to Automata and Complexity TheoryReingoldTTh 10:30-11:50Skilling Aud
cs157Logic and Automated ReasoningGeneserethTTh 12:00-1:20Gates B01
cs161Design and Analysis of AlgorithmsWoottersMW 1:30-2:50370-370
cs183EEffective Leadership in High-techFinley/GoldfeiW 4:30-5:50300-303
cs191Senior Project(none listed)by arrangement
cs191WWriting Intensive Senior Project(none listed)by arrangement
cs192Programming Service Project(none listed)by arrangement
cs193PiOS Application DevelopmentHegartyMW 4:30-5:50Hewlett200
cs198Teaching Computer ScienceSahami/ConklinM 4:30-6:20370-370
cs198BAdditional Topics in Teaching Computer ScienceSahami/ConklinTTh 4:30-5:20MitchB67
cs199Independent Work(none listed)by arrangement
cs199PIndependent Work(none listed)by arrangement
cs202Law for Computer Science ProfessionalsHansenTh 4:30-5:50Lathrop 299
cs206Exploring Computational JournalismHamilton/AgrawT 1:30-3:20JSK Fell Garage
cs208EGreat Ideas in Computer ScienceGreggTTh 1:30-2:50160-319
cs221Artificial Intelligence: Principles & TechniquesLiang/ErmonMW 1:30-2:50Nvidia Aud
cs224WAnalysis of NetworksLeskovecTTh 1:30-2:50Nvidia Aud
cs229Machine LearningNg/BonehMW 9:30-10:50Nvidia Aud
cs230Deep LearningNg/KatanforoosM 11:30-12:50Hewlett 102
cs238Decision Making under UncertaintyKochenderferMW 1:30-2:50GatesB01
cs241Embedded Systems WorkshopLevis/HorowitzMW 10:30-12:20HerrinT185
cs242Programming LanguagesCrichtonMW 4:30-5:50Skilling Aud
cs244BDistributed SystemsMazieresMW 3:00-4:20Thornton 102
cs265Randomized Algorithms and Probabilistic AnalysisValiantTTh 10:30-11:50STLC115
cs273BDeep Learning in Genomics and BiomedicineKundaje/ZouMW 3:00-4:20Hewlett201
cs274Reps and Algor for Computational Molecular BioAltmanTTh 4:30-5:50Gates B01
cs279Comp Biology: Struct & Org of Biomolecules & CellsDrorTTh 3:00-4:20Shriram104
cs300Departmental Lecture SeriesOusterhoutMW 4:30-5:50370-370
cs309ACloud Computing SeminarChouT 4:30-5:50Skilling Aud
cs315BParallel Computing Research ProjectAikenTTh 3:00-4:20200-219
cs325BData for Sustainable DevelopmentErmon/LobellT 1:30-4:20Shriram 108
cs326Topics in Advanced Robotic ManipulationBohgTTh 10:30-11:50Education 207
cs331BRepresentation Learning in Computer VisionSavarese/ZahirM 1:30-4:20Campbell 126
cs332Advanced Survey of Reinforcement LearningBrunskillMW 1:30-2:50HerrinT195
cs333Safe and Interactive RoboticsSadighTTh 3:00-4:20McMurtry 360
cs348CComputer Graphics: Animation and SimulationJamesTTh 1:30-2:50GatesB12
cs349DCloud Computing TechnologyKozyrakis/ZahaMW 10:30-12:20380-380W
cs375Large-Scale Neural Net Modeling for NeuroscienceYaminsMW 4:30-5:50 PMLathrop299
cs376Human-Computer Interaction ResearchBernsteinMW 3:00-4:20Littlefield107
cs390ACurricular Practical Training(none listed)by arrangement
cs390BCurricular Practical Training(none listed)by arrangement
cs390CCurricular Practical Training(none listed)by arrangement
cs390PPart-time Curricular Practical Training(none listed)by arrangement
cs393Computer Laboratory(none listed)by arrangement
cs395Independent Database Project(none listed)by arrangement
cs399Independent Project(none listed)by arrangement
cs399PIndependent Project(none listed)by arrangement
cs428Computation and Cognition: Probabilistic ApproachGoodmanTTh 1:30-2:50 PM200-305
cs448BData VisualizationAgrawalaMW 4:30-5:50 PMLathrop 282
cs476AMusic, Computing and Design IWangMW 3:30-5:20Knoll217
cs499Advanced Reading and Research(none listed)by arrangement
cs499PAdvanced Reading and Research(none listed)by arrangement
cs522Seminar in Artificial Intelligence in HealthcareDrorTh 4:30-5:20Hewlett200
cs53SIDiscussion in Tech for GoodSahamiT 4:30-6:20pm200-107
cs544Mobile Computing SeminarJames/Riedel-KT 4:30-5:50420-041
cs547Human-Computer Interaction SeminarBernsteinF 12:30-2:20Gates B01
cs581Media InnovationGrimesT 12:00-1:20Gates 176
cs801TGR Project(none listed)by arrangement
cs802TGR Dissertation(none listed)by arrangement


机器学习(Machine Learning,简称 ML)和计算机视觉(Computer Vision,简称 CV)是非常令人着迷、非常酷炫、颇具挑战性同时也是涉及面很广的领域。本文整理了机器学习和计算机视觉的相关学习资源,目的是帮助许多和我一样希望深刻理解“智能”背后原理的人,用最为高效的方式学习最为前沿的技术和知识。

另外请见我后一篇博客里列的数据挖掘的学习资源。

 

wikipedia.org,历史,领域概述,资源链接:

Machine learning,介绍了ML所处理的问题、常用算法、应用、软件等,右侧列举了细分条目;

List of machine learning conceptsCategory:Machine learning,列举出了更多ML相关概念和条目;

Computer vision,同样,介绍了CV所处理的问题、常用方法、应用等,底部列举了细分条目;

List of computer vision topicsCategory:Computer vision,列举了更多CV相关条目。

 

大学课程、在线教程

Stanford 关于ML和CV计算机课程(按推荐排序):

1、Andrew NG机器学习课程网易公开课:http://open.163.com/special/opencourse/machinelearning.html

2、机器学习课程教学官网: http://cs229.stanford.edu/syllabus.html


cs229 Machine Learning

cs229T Statistical Learning Theory

cs231N Convolutional Neural Networks for Visual Recognition

cs231A Computer Vision:From 3D Recontruct to Recognition

cs231B The Cutting Edge of Computer Vision

cs221 Artificial Intelligence: Principles & Techniques

cs131 Computer Vision: Foundations and Applications

cs369L A Theoretical Perspective on Machine Learning

cs205A Mathematical Methods for Robotics, Vision & Graph

cs231MMobile Computer Vision

这些课程大都可以下载PPT,更多课程请见Courses | Stanford Computer Science,Open class room的ML课程Machine LearningUnsupervised Feature Learning and Deep Learning,Coursera的ML课程:Machine Learning,以及Stanford在线教程Deep learning tuorial

更多大学课程可以用“machine learning course”或“computer vision course”为关键字搜索,这里是Google的国内镜像,这样就不需要FanQiang了。

 

专著、书籍

ML:

机器学习,周志华,2016;

统计学习方法,李航,2012;

Deep Learning: Methods and Applications, Li Deng and Dong Yu, 2014;

Introduction to Machine Learning (3rd ed.), Ethem Alpaydin, 2014;

Machine Learning: An Algorithmic Perspective (2nd ed.), Stephen Marsland, 2015;

Deep Learning,一本在线书籍;

Neural Networks and Learning Machines (3rd ed.), Simon O. Haykin, 2008;有中文译本:神经网络与机器学习;

Pattern Recognition and Machine Learning, Christopher Bishop, 2006;有中文译本:模式识别与机器学习;

Machine Learning: a Probabilistic Perspective, Kevin P. Murphy, 2012;

CV:

Concise Computer Vision: An Introduction into Theory and Algorithms, Klette, Reinhard, 2014;

Computer Vision: Algorithms and Applications, Szeliski, Richard, 2011;有中文译本:计算机视觉——算法与应用;

Multiple View Geometry in Computer Vision (2nd ed.), Richard Hartley and Andrew Zisserman, 2004;

An Invitation to 3-D Vision: From Images to Geometric Models,  Yi Ma, Stefano Soatto, Jana Kosecka, S. Shankar Sastry, 2004

Robot vision, Berthold K. P. Horn, 1986;有中文译本:机器视觉;

Image Processing, Analysis, and Machine Vision (3rd ed.), Milan Sonka, Vaclav Hlavac, Roger Boyle, 2007;有中文译本:图像处理、分析与机器视觉;

推荐一个非常好的搜索英文电子书的网站:Library Genesis

 

学术论文

ML、CV领域的顶级期刊:TPAMIIJCV,学术会议:ACLCVPRICMLICCVNIPSECCVACCV等;

CVPapers 对CV领域学术论文做了很好的整理;

ImageNet 每年举办的图像识别比赛很能代表CV最高水平,MS COCO是类似比赛,KITTI上有很多数据以及CV算法的排名,这里是一个数据集的列表,这里是CV数据集;

arXiv.org,很多最新论文首先发表在这里;

当然还是推荐Google Scholar,这里是一个镜像网站。

 

学习网站

deeplearning.net:一个非常好的机器学习网站,有datasetsoftwarereading list连接;

VisionBib.Com:学术大牛整理的CV资源;

CVonline有一个非常全面的资源链接;

新智元机器之心是很好的机器学习资讯平台,另外推荐一些微信公众号:机器学习研究会,程序媛的日常。

 

程序、库

OpenCV:一个C++视觉库,使用广泛;

TorchTheano:两个很强大的支持CUDA显卡加速的Python机器学习库;

Caffe:很多研究者使用的Deep Learning库;

R语言:一个方便开发机器学习程序的环境;


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱晓霞AI

您的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值