图像检索论文汇总

1. Learning High-level Image Representation for Image Retrieval via Multi-Task DNN using Clickthrough Data

arxiv: http://arxiv.org/abs/1312.4740

paper: http://legacy.openreview.net/document/90fc8dad-ad02-4ddc-ab06-e7b55706869d#90fc8dad-ad02-4ddc-ab06-e7b55706869d


2.Neural Codes for Image Retrieval

project page: http://sites.skoltech.ru/compvision/projects/neuralcodes/ 
arxiv: http://arxiv.org/abs/1404.1777 
github: https://github.com/arbabenko/Spoc


3.Efficient On-the-fly Category Retrieval using ConvNets and GPUs

arxiv: http://arxiv.org/abs/1407.4764


4.Deep Learning of Binary Hash Codes for Fast Image Retrieval

intro: CVPR Workshop 2015 
intro: MNIST, CIFAR-10, Yahoo-1M 
paper: http://www.iis.sinica.edu.tw/~kevinlin311.tw/cvprw15.pdf 
github: https://github.com/kevinlin311tw/caffe-cvprw15


5.Learning visual similarity for product design with convolutional neural networks

intro: SIGGRAPH 2015 
paper: http://www.cs.cornell.edu/~kb/publications/SIG15ProductNet.pdf 
paper: http://dl.acm.org.sci-hub.cc/citation.cfm?doid=2809654.2766959


6.Deep Semantic Ranking Based Hashing for Multi-Label Image Retrieval

intro: CVPR 2015 
arxiv: http://arxiv.org/abs/1501.06272


7.Exploiting Local Features from Deep Networks for Image Retrieval

intro: CVPR DeepVision Workshop 2015 
arxiv: https://arxiv.org/abs/1504.05133

intro: SSDH 
arxiv: http://arxiv.org/abs/1507.00101 
github: https://github.com/kevinlin311tw/Caffe-DeepBinaryCode


9.Cross-domain Image Retrieval with a Dual Attribute-aware Ranking Network

intro: ICCV 2015 
intro: DARN, cross-entropy loss, triplet loss 
arxiv: http://arxiv.org/abs/1505.07922


10.Aggregating Deep Convolutional Features for Image Retrieval

intro: ICCV 2015 
intro: Sum pooing 
arxiv: http://arxiv.org/abs/1510.07493


11.Feature Learning based Deep Supervised Hashing with Pairwise Labels

intro: IJCAI 2016 
arxiv: http://arxiv.org/abs/1511.03855 
code: http://cs.nju.edu.cn/lwj/code/DPSH_code.rar


12.Particular object retrieval with integral max-pooling of CNN activations

intro: use max-pooling to aggregate the deep descriptors, R-MAC (regional maximum activation of convolutions) 
arxiv: https://arxiv.org/abs/1511.05879

Group Invariant Deep Representations for Image Instance Retrieval 
arxiv: http://arxiv.org/abs/1601.02093


13.Where to Buy It: Matching Street Clothing Photos in Online Shops

intro: ICCV 2015 
hmepage: http://www.tamaraberg.com/street2shop/ 
paper: http://www.tamaraberg.com/papers/street2shop.pdf

paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Kiapour_Where_to_Buy_ICCV_2015_paper.html


intro: ECCV 2016 
project page: http://www.xrce.xerox.com/Research-Development/Computer-Vision/Learning-Visual-Representations/Deep-Image-Retrieval 
arxiv: https://arxiv.org/abs/1604.01325 
slides: http://www.slideshare.net/xavigiro/deep-image-retrieval-learning-global-representations-for-image-search


intro: ICMR 2016. Best Poster Award at ICMR 2016. 
project page: https://imatge-upc.github.io/retrieval-2016-icmr/ 
arxiv: https://arxiv.org/abs/1604.04653 
github: https://github.com/imatge-upc/retrieval-2016-icmr 
slides: http://www.slideshare.net/xavigiro/convolutional-features-for-instance-search


intro: DeepVision Workshop in CVPR 2016 
homepage: http://imatge-upc.github.io/retrieval-2016-deepvision/ 
arxiv: http://arxiv.org/abs/1604.08893 
github: https://github.com/imatge-upc/retrieval-2016-deepvision


17.Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks

intro: CVPR 2016. DeepBit 
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lin_Learning_Compact_Binary_CVPR_2016_paper.pdf 
github: https://github.com/kevinlin311tw/cvpr16-deepbit


18.Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles

intro: CVPR 2016 
intro: vehicle re-identification, vehicle retrieval. coupled clusters loss 
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_Deep_Relative_Distance_CVPR_2016_paper.pdf


19.DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations

intro: CVPR 2016. FashionNet 
project page: http://personal.ie.cuhk.edu.hk/~lz013/projects/DeepFashion.html 
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DeepFashion_Powering_Robust_CVPR_2016_paper.pdf


20.CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples

intro: ECCV 2016 
project page(paper+code+data): http://cmp.felk.cvut.cz/~radenfil/projects/siamac.html 
arxiv: https://arxiv.org/abs/1604.02426 
paper: http://cmp.felk.cvut.cz/~radenfil/publications/Radenovic-ECCV16.pdf 
code(Matlab): http://ptak.felk.cvut.cz/personal/radenfil/siamac/siaMAC_code.tar.gz


21.SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval

arxiv: http://arxiv.org/abs/1607.08477


22.Deep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval

intro: Microsoft 
paper: http://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/Deep-Semantic-Preserving-and-Ranking-Based-Hashing-for-Image-Retrieval.pdf


23.SIFT Meets CNN: A Decade Survey of Instance Retrieval

arxiv: http://arxiv.org/abs/1608.01807


24.Deep Hashing: A Joint Approach for Image Signature Learning

arxiv: http://arxiv.org/abs/1608.03658


25.End-to-end Learning of Deep Visual Representations for Image Retrieval

intro: ECCV 2016 
project page: http://www.xrce.xerox.com/Research-Development/Computer-Vision/Learning-Visual-Representations/Deep-Image-Retrieval 
arxiv: https://arxiv.org/abs/1610.07940

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱晓霞AI

您的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值