LRU算法
- LRU算法需要在原有结构上附加一个链表。当某个元素被访问时,它在链表中的位置就会被移动到表头,这样位于链表尾部的元素就是最近最少使用的元素,优先被踢掉;位于链表头部的元素就是最近刚被使用过的元素,暂时不会被踢。
Redis内存淘汰策略使用了近似LRU算法。
- Redis 使用的是一种近似 LRU 算法,之所以不用传统的 LRU 是因为它引入了链表,会占用较多的内存。
- 近似 LRU 算法在现有数据结构的基础上采用随机采样的方式来淘汰元素,它为每个 key 增加了一个最后一次被访问的时间戳,当内存不足时,就执行一次近似 LRU 算法,具体步骤是随机采样 5 个 key,这个采样个数默认为 5,然后根据时间戳淘汰掉最旧的那个 key,如果淘汰后内存还是不足,就继续随机采样来淘汰。这里的淘汰策略如果设置的是 allkeys,就从所有 key 中随机采样,如果设置的是 volatile,就从设有过期时间的 key 中随机采样,采样值越大,效果就越接近传统的 LRU 算法。
- redis 3.0 在算法中增加了淘汰池,进一步提升了近似 LRU 算法的效果。具体原理是构建一个淘汰池数组,在每一次淘汰循环中,新随机采样的 key 会和淘汰池中的 key 进行融合,淘汰掉最旧的那个 key 后,保留剩余的 key 放入淘汰池中等待下一次循环。
import java.util.HashMap;
import java.util.Map;
public class LRUCache<k, v> {
//容量
private int capacity;
//当前有多少节点的统计
private int count;
//缓存节点
private Map<k, Node> nodeMap;
private Node head;
private Node tail;
public LRUCache(int capacity) {
if (capacity < 1) {
throw new IllegalArgumentException(String.valueOf(capacity));
}
this.capacity = capacity;
this.nodeMap = new HashMap<>();
//初始化头节点和尾节点,利用哨兵模式减少判断头结点和尾节点为空的代码
Node headNode = new Node(null, null);
Node tailNode = new Node(null, null);
headNode.next = tailNode;
tailNode.pre = headNode;
this.head = headNode;
this.tail = tailNode;
}
public void put(k key, v value) {
Node node = nodeMap.get(key);
if (node == null) {
if (count >= capacity) {
//先移除一个节点
removeNode();
}
node = new Node<>(key, value);
//添加节点
addNode(node);
} else {
//移动节点到头节点
moveNodeToHead(node);
}
}
public Node get(k key) {
Node node = nodeMap.get(key);
if (node != null) {
moveNodeToHead(node);
}
return node;
}
private void removeNode() {
Node node = tail.pre;
//从链表里面移除
removeFromList(node);
nodeMap.remove(node.key);
count--;
}
private void removeFromList(Node node) {
Node pre = node.pre;
Node next = node.next;
pre.next = next;
next.pre = pre;
node.next = null;
node.pre = null;
}
private void addNode(Node node) {
//添加节点到头部
addToHead(node);
nodeMap.put((k) node.key, node);
count++;
}
private void addToHead(Node node) {
Node next = head.next;
next.pre = node;
node.next = next;
node.pre = head;
head.next = node;
}
public void moveNodeToHead(Node node) {
//从链表里面移除
removeFromList(node);
//添加节点到头部
addToHead(node);
}
class Node<k, v> {
k key;
v value;
Node pre;
Node next;
public Node(k key, v value) {
this.key = key;
this.value = value;
}
}
}