Java实现LRU算法

    LRU算法

  • LRU算法需要在原有结构上附加一个链表。当某个元素被访问时,它在链表中的位置就会被移动到表头,这样位于链表尾部的元素就是最近最少使用的元素,优先被踢掉;位于链表头部的元素就是最近刚被使用过的元素,暂时不会被踢。

    Redis内存淘汰策略使用了近似LRU算法。

  • Redis 使用的是一种近似 LRU 算法,之所以不用传统的 LRU 是因为它引入了链表,会占用较多的内存。
  • 近似 LRU 算法在现有数据结构的基础上采用随机采样的方式来淘汰元素,它为每个 key 增加了一个最后一次被访问的时间戳,当内存不足时,就执行一次近似 LRU 算法,具体步骤是随机采样 5 个 key,这个采样个数默认为 5,然后根据时间戳淘汰掉最旧的那个 key,如果淘汰后内存还是不足,就继续随机采样来淘汰。这里的淘汰策略如果设置的是 allkeys,就从所有 key 中随机采样,如果设置的是 volatile,就从设有过期时间的 key 中随机采样,采样值越大,效果就越接近传统的 LRU 算法。
  • redis 3.0 在算法中增加了淘汰池,进一步提升了近似 LRU 算法的效果。具体原理是构建一个淘汰池数组,在每一次淘汰循环中,新随机采样的 key 会和淘汰池中的 key 进行融合,淘汰掉最旧的那个 key 后,保留剩余的 key 放入淘汰池中等待下一次循环。
import java.util.HashMap;
import java.util.Map;

public class LRUCache<k, v> {
    //容量
    private int capacity;
    //当前有多少节点的统计
    private int count;
    //缓存节点
    private Map<k, Node> nodeMap;
    private Node head;
    private Node tail;

    public LRUCache(int capacity) {
        if (capacity < 1) {
            throw new IllegalArgumentException(String.valueOf(capacity));
        }
        this.capacity = capacity;
        this.nodeMap = new HashMap<>();
        //初始化头节点和尾节点,利用哨兵模式减少判断头结点和尾节点为空的代码
        Node headNode = new Node(null, null);
        Node tailNode = new Node(null, null);
        headNode.next = tailNode;
        tailNode.pre = headNode;
        this.head = headNode;
        this.tail = tailNode;
    }

    public void put(k key, v value) {
        Node node = nodeMap.get(key);
        if (node == null) {
            if (count >= capacity) {
                //先移除一个节点
                removeNode();
            }
            node = new Node<>(key, value);
            //添加节点
            addNode(node);
        } else {
            //移动节点到头节点
            moveNodeToHead(node);
        }
    }

    public Node get(k key) {
        Node node = nodeMap.get(key);
        if (node != null) {
            moveNodeToHead(node);
        }
        return node;
    }

    private void removeNode() {
        Node node = tail.pre;
        //从链表里面移除
        removeFromList(node);
        nodeMap.remove(node.key);
        count--;
    }

    private void removeFromList(Node node) {
        Node pre = node.pre;
        Node next = node.next;

        pre.next = next;
        next.pre = pre;

        node.next = null;
        node.pre = null;
    }

    private void addNode(Node node) {
        //添加节点到头部
        addToHead(node);
        nodeMap.put((k) node.key, node);
        count++;
    }

    private void addToHead(Node node) {
        Node next = head.next;
        next.pre = node;
        node.next = next;
        node.pre = head;
        head.next = node;
    }

    public void moveNodeToHead(Node node) {
        //从链表里面移除
        removeFromList(node);
        //添加节点到头部
        addToHead(node);
    }

    class Node<k, v> {
        k key;
        v value;
        Node pre;
        Node next;

        public Node(k key, v value) {
            this.key = key;
            this.value = value;
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值