给定一个二叉树(具有根结点 root), 一个目标结点 target ,和一个整数值 K 。
返回到目标结点 target 距离为 K 的所有结点的值的列表。 答案可以以任何顺序返回。
示例 1:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], target = 5, K = 2
输出:[7,4,1]
解释:
所求结点为与目标结点(值为 5)距离为 2 的结点,
值分别为 7,4,以及 1
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/all-nodes-distance-k-in-binary-tree
思路
- DFS 先找到target的子树中,相距target为k的节点
- 递归回溯的时候调整target节点为根节点(如果target已经是根节点,就不需要再调整了)
- 删除target的子树
- target的一个孩子置空,一个孩子指向父结点
- 父节点指向target的指针改为指向父节点的父节点
具体操作如图
- 调整后,target变成了root节点,直接递归找相距target为k的节点
如图
题解- 两次dfs- 通过 O(n)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def distanceK(self, root, target, k: int):
if k==0:return [target.val]
ans = []
# 找到每个节点距离target的距离,如果等于K 则返回
# 找到目标节点target
# 找到目标节点相距K的节点
def dfs(root,l,r,papa,ad = True):
if not root: return False
if l+r == k:
ans.append(root.val)
return False
if root == target:l = r = k
f1 = dfs(root.left,l-1,r,root)
f2 = dfs(root.right,l,r-1,root)
if ad:
adjust(root,papa)
if f1:root.left = papa
if f2:root.right = papa
if root==target:
root.left = None
root.right = papa
if root == target or f1 or f2:return True
return False
def adjust(root,papa):
if root == target:
target.left == None
target.right = papa
if k == 0:return [target]
if root!=target:dfs(root,-1,-1,None)
dfs(target,-1,-1,None,ad=False)
return ans