还是YY难求。wa的原因是将逗号写成了分号。。。
答案是第一个数/总的数的和。 http://blog.csdn.net/tclh123/article/details/6849679
其实就是M种牌放到M堆里,M种牌和M堆都是从1~M编号的。输入 M, 然后输入M个数,表示M种牌分别有多少张,同时也表示M堆分别的最大容量是多少。游戏是这样玩的,从第一堆开始由顶向下取(简单起见),取到的牌属于第k种,就接着到第k堆取。当任何一次取不到牌时,游戏结束。求游戏结束时牌恰好被取完的概率。
分析:假设取的牌顺序是一个序列,那么这种序列在末尾为1时是和取牌序列一一对应的,且是符合“游戏结束时牌恰好被取完”的一种情况。
简证:1、在序列中,任一数 i 的后一个数 j 是必然要放在第 i 堆里的。而值为 i 的数有 a[i]个,所以在 i 后面的数也恰好a[i]个,所以a[i]个数被放到第 i 堆,符合题目约束条件。
2、在序列中,由于游戏是从第一堆开始的,所以第一个数虽然没有前驱,但是他是放在第 1 堆的。所以如果 1 不为最后一个数,那么第一堆中必然有a[1]+1个数了,不行。
3、序列中的最后一个数 记 i ,如果不为 1 ,那么值 i 就只有a[i]-1个后继了。
4、结合2、3,易知只有最后一个数为 1 ,堆容量a[i]才会都符合。才能根据此序列构造一种符合的分堆及取牌(题目原意是随机取的)情况,即一一对应。
所以至此,题目转变为N个数的全排列,其中最后一个数为1的概率是多少。先从a[1]个1里取一个1,有a[1]种,然后剩下的N-1个数全排列有(N-1)!种,所以总共符合有a[1]*(N-1)!种。而N个数全排列有N!种。所以概率为a[1]/N。而N = sum(a[i])。
/*
Pro: 0
Sol:
date:
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#include <set>
#include <vector>
using namespace std;
int t,m;
double f,sum,tmp;
int main(){
scanf("%d",&t);
for(int ca = 1; ca <= t; ca ++){
scanf("%d",&m);
sum = 0;
m --; scanf("%lf",&f); sum += f;
while(m --) scanf("%lf",&tmp), sum += tmp;//这里啊。。。。
printf("Case %d: %.6f\n",ca,f / sum);
}
return 0;
}