第1关:knn算法概述
任务描述
本关任务:使用python实现方法,找出目标样本最近的k个样本。
相关知识
为了完成本关任务,你需要掌握:1.knn算法思想,2.距离度量。
knn算法思想
k-近邻(k-nearest neighbor ,knn)是一种分类与回归的方法。我们这里只讨论用来分类的knn。所谓k最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最近的k个邻居来代表。
knn算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。knn方法在类别决策时,只与极少量的相邻样本有关。
#encoding=utf8
import numpy as np
def