数据挖掘算法原理与实践:k-近邻

本文介绍了k-近邻(knn)算法的基本思想和核心流程,包括距离度量和加权投票原则。通过实例展示了如何使用python实现knn算法,特别是针对手写数字识别问题,利用sklearn加载数据集并划分训练集与测试集。在knn算法中,当样本的最近k个邻居类别票数相等时,通过距离权重解决分类决策。文章还鼓励读者自己实现knn算法并达到较高的识别准确率。
摘要由CSDN通过智能技术生成

第1关:knn算法概述

任务描述
本关任务:使用python实现方法,找出目标样本最近的k个样本。

相关知识
为了完成本关任务,你需要掌握:1.knn算法思想,2.距离度量。

knn算法思想
k-近邻(k-nearest neighbor ,knn)是一种分类与回归的方法。我们这里只讨论用来分类的knn。所谓k最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最近的k个邻居来代表。

knn算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。knn方法在类别决策时,只与极少量的相邻样本有关。

#encoding=utf8
import numpy as np

def 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ssaty.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值