KNN算法

1.1 为什么选择KNN
其次,KNN算法也很好用,理论成熟,简单粗暴,既可以用来做分类(天然支持多分类),也可以用来做回归。并且与朴素贝叶斯之类的算法相比,由于其对数据没有假设,因此准确度高,对异常点不敏感

1.1.1 KNN思想简介
KNN(K-NearestNeighbor),也就是K最近邻算法。顾名思义,所谓K最近邻,就是K个最近邻居的意思。也就是在数据集中,认为每个样本可以用离他距离最近的K个邻居来代表。

KNN算法的原理:

  • 近朱者赤,近墨者黑。
  • step1:计算待分类物体和其他物体之间的距离
  • step2:统计距离最近的K个邻居
  • step3:位置物体分类=K个最近的邻居,分类最多的那个类别。

贴出一张从百度百科上找的一张图,我们可以直观地感受到这朴素的思想:我们要判断Xu 是什么颜色的,找到与其距离最近的5个点,有4个是红色的,有1个是绿色的。因此我们认为Xu是属于红色的集合
在这里插入图片描述
因此可以说 :

在一个给定的类别已知的训练样本集中,已知样本集中每一个数据与所属分类的对应关系(标签)。在输入不含有标签的新样本后,将新的数据的每个特征与样本集
中数据对应的特征进行比较,然后算法提取样本最相似的k个数据(最近邻)的分类标签。通过多数表决等方式进行预测。即选择k个最相似数据中出现次数最多的分
类,作为新数据的分类。

K近邻法不具有显式的学习过程,而是利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。

1.1.2 KNN算法流程
通过理解算法思想,可以将其简化为“找邻居+投票”。K近邻法使用的模型,实际上是特征空间的划分。模型由三个基本要素决定

  • 距离度量
  • k值
  • 分类决策规则

K值选择:

  • K值太小,容易过拟合。
  • K值太大,容易欠拟合。
  • 交叉验证的方式选取K值。

距离定义:

  • 欧式距离:
  • 曼哈顿距离:
  • 闵可夫斯基距离
  • 切比雪夫距离
  • 余弦距离

KD树:

  • 定义:对数据点在K维空间中划分的一种数据结构,二叉树结构在Sklearn中设置KD树

其中两个实例点之间的距离反映了相似程度。一般来说使用欧氏距离来计算。

梳理kNN算法流程如下:

  • 计算测试对象到训练集中每个对象的距离
  • 按照距离的远近排序
  • 选取与当前测试对象最近的k的训练对象,作为该测试对象的邻居
  • 统计这k个邻居的类别频率
  • k个邻居里频率最高的类别,即为测试对象的类别

2.2 KNN算法自实现

import numpy as npimport matplotlib.pyplot as plt# raw_data_x是特征,raw_data_y是标签,0为良性,1为恶性raw_data_X = [[3.393533211, 2.331273381],
              [3.110073483, 1.781539638],
              [1.343853454, 3.368312451],
              [3.582294121, 4.679917921],
              [2.280362211, 2.866990212],
              [7.423436752, 4.685324231],
              [5.745231231, 3.532131321],
              [9.172112222, 2.511113104],
              [7.927841231, 3.421455345],
              [7.939831414, 0.791631213]
             ]
raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]# 设置训练组X_train = np.array(raw_data_X)
y_train = np.array(raw_data_y)# 将数据可视化plt.scatter(X_train[y_train==0,0],X_train[y_train==0,1], color='g', label = 'Tumor Size')
plt.scatter(X_train[y_train==1,0],X_train[y_train==1,1], color='r', label = 'Time')
plt.xlabel('Tumor Size')
plt.ylabel('Time')
plt.axis([0,10,0,5])
plt.show()

数据可视化后生成的图片如下图所示。其中横轴是肿块大小,纵轴是发现时间。每个病人的肿块大小和发病时间构成了二维平面特征中的一个点。对于每个点,我们通过label明确是恶性肿瘤(绿色)、良性肿瘤(红色)。在这里插入图片描述
那么现在给出一个肿瘤患者的数据(样本点)x:[8.90933607318, 3.365731514],是良性肿瘤还是恶性肿瘤

求距离

我们要做的是:求点x到数据集中每个点的距离,首先计算距离,使用欧氏距离

from math import sqrt

distances = []  # 用来记录x到样本数据集中每个点的距离for x_train in X_train:
    d = sqrt(np.sum((x_train - x) ** 2))
    distances.append(d)# 使用列表生成器,一行就能搞定,对于X_train中的每一个元素x_train都进行前面的运算,把结果生成一个列表distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in X_train]

distances

输出:[5.611968000921151, 6.011747706769277, 7.565483059418645, 5.486753308891268, 6.647709180746875, 1.9872648870854204, 3.168477291709152, 0.8941051007010301, 0.9830754144862234, 2.7506238644678445]

在求出距离列表之后,我们要找到最小的距离,需要进行一次排序操作。其实不是简单的排序,因为我们把只将距离排大小是没有意义的,我们要知道距离最小的k个点是在样本集中的位置。

这里我们使用函数:np.argsort(array) 对一个数组进行排序,返回的是相应的排序后结果的索引

nearest = np.argsort(distances)
nearest

输出:array([7, 8, 5, 9, 6, 3, 0, 1, 4, 2])
结果的含义是:距离最小的点在distances数组中的索引是7,第二小的点索引是8... 近到远是哪些点

选k值

然后我们选择k值,这里暂定为6,那就找出最近的6个点(top 6),并记录他们的标签值(y)

k = 6topK_y = [y_train[i] for i in nearest[:k]]
topK_y

输出:[1, 1, 1, 1, 1, 0]

决策规则
下面进入投票环节。找到与测试样本点最近的6个训练样本点的标签y是什么。可以查不同类别的点有多少个。

将数组中的元素和元素出现的频次进行统计

from collections import Counter
votes = Counter(topK_y)
votes

输出:一个字典,原数组中值为0的个数为1,值为1的个数有为5Counter({0:1, 1:5})

# Counter.most_common(n) 找出票数最多的n个元素,返回的是一个列表,列表中的每个元素是一个元组,元组中第一个元素是对应的元素是谁,第二个元素是频次votes.most_common(1)

输出:[(1,5)]

predict_y = votes.most_common(1)[0][0]
predict_y

输出:1

得到预测的y值是1

自实现完整工程代码

我们已经在jupyter notebook中写好了kNN算法,下面我们在外部进行封装。

相关代码可以在 https://github.com/japsonzbz/ML_Algorithms 中看到

import numpy as npimport math as sqrtfrom collections import Counterclass kNNClassifier:

    def __init__(self, k):
        """初始化分类器"""
        assert k >= 1, "k must be valid"
        self.k = k
        self._X_train = None
        self._y_train = None

    def fit(self, X_train, y_train):
        """根据训练数据集X_train和y_train训练kNN分类器"""
        assert X_train.shape[0] == y_train.shape[0], \            "the size of X_train must be equal to the size of y_train"
        assert self.k <= X_train.shape[0], \            "the size of X_train must be at least k"
        self._X_train = X_train
        self._y_train = y_train        return self    def predict(self,X_predict):
        """给定待预测数据集X_predict,返回表示X_predict结果的向量"""
        assert self._X_train is not None and self._y_train is not None, \            "must fit before predict!"
        assert X_predict.shape[1] == self._X_train.shape[1], \            "the feature number of X_predict must be equal to X_train"
        y_predict = [self._predict(x) for x in X_predict]        return np.array(y_predict)    def _predict(self, x):
        distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._X_train]
        nearest = np.argsort(distances)
        topK_y = [self._y_train[i] for i in nearest]
        votes = Counter(topK_y)        return votes.most_common(1)[0][0]    def __repr__(self):

当我们写完定义好自己的kNN代码之后,可以在jupyter notebook中使用魔法命令进行调用:

%run myAlgorithm/kNN.py

knn_clf = kNNClassifier(k=6)
knn_clf.fit(X_train, y_train)
X_predict = x.reshape(1,-1)
y_predict = knn_clf.predict(X_predict)
y_predict

输出:array([1])

现在我们就完成了一个sklearn风格的kNN算法,但是实际上,sklearn封装的算法比我们实现的要复杂得多。

sklearn中的kNN
sklearn的使用:

  • 分类:KNeighborsClassifier.
    回归:KNeighborsRegressor
  • KNeighborsClassifier构造参数:
    1.n_neighbors:即KNN中的K值,默认5.
    2.weights:用来确定邻居的权重。三种方式:uniform,distance,自定义
    3.algorithm:规定计算邻居的方法。四种方式:auto,kd_tree,ball_tree,brute
    4.leaf_size:代表构造KD树或球树的叶子数。默认30。
  • KNeighborsClassifier功能函数:
    fit(train_x,train_y):分类器训练
    predict(test_x):用训练好的分类器进行预测。

代码

对于机器学习来说,其流程是:训练数据集 -> 机器学习算法 -fit-> 模型 输入样例 -> 模型 -predict-> 输出结果

我们之前说过,kNN算法没有模型,模型其实就是训练数据集,predict的过程就是求k近邻的过程。

我们使用sklearn中已经封装好的kNN库。你可以看到使用有多么简单。

from sklearn.neighbors import KNeighborsClassifier# 创建kNN_classifier实例kNN_classifier = KNeighborsClassifier(n_neighbors=6)# kNN_classifier做一遍fit(拟合)
的过程,没有返回值,模型就存储在kNN_classifier实例中kNN_classifier.fit(X_train, y_train)# kNN进行预测predict,需要传入一个矩阵,而不能是一个数组。
reshape()成一个二维数组,第一个参数是1表示只有一个数据,第二个参数-1,numpy自动决定第二维度有多少y_predict = kNN_classifier.predict(x.reshape(1,-1))
y_predict

输出:array([1])

在kNN_classifier.fit(X_train, y_train)这行代码后其实会有一个输出

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=6, p=2,
           weights='uniform')

参数

class
sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’, metric_params=None, n_jobs=None, **kwargs)

我们研究一下参数:

  • n_neighbors: int, 可选参数(默认为 5)。用于kneighbors查询的默认邻居的数量

  • weights(权重): str or callable(自定义类型), 可选参数(默认为 ‘uniform’)。用于预测的权重参数,可选参数如下:

  • uniform : 统一的权重. 在每一个邻居区域里的点的权重都是一样的。

  • distance : 权重点等于他们距离的倒数。
    使用此函数,更近的邻居对于所预测的点的影响更大。

  • [callable] : 一个用户自定义的方法,此方法接收一个距离的数组,然后返回一个相同形状并且包含权重的数组。

  • algorithm(算法): {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, 可选参数(默认为 ‘auto’)。计算最近邻居用的算法:

  • ball_tree 使用算法BallTree

  • kd_tree 使用算法KDTree

  • brute 使用暴力搜索

  • auto 会基于传入fit方法的内容,选择最合适的算法。
    注意 : 如果传入fit方法的输入是稀疏的,将会重载参数设置,直接使用暴力搜索。

  • leaf_size(叶子数量): int, 可选参数(默认为 30)。传入BallTree或者KDTree算法的叶子数量。此参数会影响构建、查询BallTree或者KDTree的速度,以及存储BallTree或者KDTree所需要的内存大小。此可选参数根据是否是问题所需选择性使用。

  • p: integer, 可选参数(默认为 2)。用于Minkowski metric(闵可夫斯基空间)的超参数。p = 1, 相当于使用曼哈顿距离,p = 2, 相当于使用欧几里得距离],对于任何 p ,使用的是闵可夫斯基空间。

  • metric(矩阵): string or callable, 默认为 ‘minkowski’。用于树的距离矩阵。默认为闵可夫斯基空间,如果和p=2一块使用相当于使用标准欧几里得矩阵. 所有可用的矩阵列表请查询 DistanceMetric 的文档。

  • metric_params(矩阵参数): dict, 可选参数(默认为 None)。给矩阵方法使用的其他的关键词参数。

  • n_jobs: int, 可选参数(默认为 1)。用于搜索邻居的,可并行运行的任务数量。如果为-1, 任务数量设置为CPU核的数量。不会影响fit

方法

对于**KNeighborsClassifier**的方法:

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值