Floyd算法:
标准弗洛伊德算法,三重循环,基于动态规划。
循环结束之后 d[i][j]存储的就是点 i 到点 j 的最短距离。
需要注意循环顺序不能变:第一层枚举中间点,第二层和第三层枚举起点和终点。
特点:
1.复杂度为O(n^3),只能处理200以内的点。
2.一次求出所有结点直接的最短路径。
3.能处理有负权边的图。
Floyd模板:
#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int N=205;
int n,m,d[N][N];
int main(){
scanf("%d%d%d",&n,&m);
//初始化
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j]=i==j?0:INF; //自己到自己的距离为0
//输入边
for(int i=0,x,y,w;i<m;i++){
scanf("%d%d%d",&x,&y,&x);
d[x][y]=d[y][x]=min(d[x][y],w);
}
//Floyd核心代码
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
// if(d[i][k]==INF||d[k][j]==INF) continue; //防止负权影响INF
if(d[i][j]>d[i][k]+d[k][j])
d[i][j]=d[i][k]+d[k][j];
// e[i][j]=min(e[i][j],e[i][k]+e[k][j]); //数据量大时,min会慢一些
}
}
}
cout<<d[1][n];
return 0;
}
AcWing 854. Floyd求最短路
给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定 kk 个询问,每个询问包含两个整数 xx 和 yy,表示查询从点 xx 到点 yy 的最短距离,如果路径不存在,则输出 impossible
。
数据保证图中不存在负权回路。
输入格式
第一行包含三个整数 n,m,kn,m,k。
接下来 mm 行,每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。
接下来 kk 行,每行包含两个整数 x,yx,y,表示询问点 xx 到点 yy 的最短距离。
输出格式
共 kk 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出
impossible
。
数据范围
1≤n≤200 1≤n≤200,
1≤k≤n2 1≤k≤n2
1≤m≤20000 1≤m≤20000,
图中涉及边长绝对值均不超过 1000010000。
输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
代码:
#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int N=205;
int n,m,k,x,y,z,e[N][N];
int main(){
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++) //初始化
for(int j=1;j<=n;j++)
e[i][j]=i==j?0:INF;
for(int i=0;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
e[x][y]=min(e[x][y],z);
}
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(e[i][k]==INF||e[k][j]==INF) continue; //防止负权影响INF,或者在输出的时候判断e[x][y]>INF/2
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
// e[i][j]=min(e[i][j],e[i][k]+e[k][j]); //数据量大时,min会慢一些
}
}
}
while(k--){
scanf("%d%d",&x,&y);
if(e[x][y]==INF) cout<<"impossible"<<endl; //存在负权时,如果不存在通路,不一定是INF,会小一些
else cout<<e[x][y]<<endl;
}
return 0;
}