AcWing 854. Floyd求最短路&&Floyd模板

文章介绍了Floyd算法,一种用于找到图中所有节点间最短路径的动态规划方法。它具有O(n^3)的时间复杂度,能处理负权边,但不适合大规模数据。文章提供了C++实现模板,并展示了处理含有负权边的有向图的示例。
摘要由CSDN通过智能技术生成

Floyd算法:

标准弗洛伊德算法,三重循环,基于动态规划。

循环结束之后 d[i][j]存储的就是点 i 到点 j 的最短距离。

需要注意循环顺序不能变:第一层枚举中间点,第二层和第三层枚举起点和终点。

特点:

        1.复杂度为O(n^3),只能处理200以内的点。

        2.一次求出所有结点直接的最短路径。

        3.能处理有负权边的图。
 

Floyd模板:

#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int N=205;
int n,m,d[N][N];
int main(){
	scanf("%d%d%d",&n,&m);
	//初始化 
	for(int i=1;i<=n;i++)		
		for(int j=1;j<=n;j++)
			d[i][j]=i==j?0:INF;	//自己到自己的距离为0 
	//输入边	
	for(int i=0,x,y,w;i<m;i++){
		scanf("%d%d%d",&x,&y,&x);
		d[x][y]=d[y][x]=min(d[x][y],w);
	}
	//Floyd核心代码 
	for(int k=1;k<=n;k++){
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
//				if(d[i][k]==INF||d[k][j]==INF) continue; //防止负权影响INF 
				if(d[i][j]>d[i][k]+d[k][j])
					 d[i][j]=d[i][k]+d[k][j];
//				e[i][j]=min(e[i][j],e[i][k]+e[k][j]);	//数据量大时,min会慢一些 
			}
		}
	}
	cout<<d[1][n];
	return 0;
} 

AcWing 854. Floyd求最短路

给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 kk 个询问,每个询问包含两个整数 xx 和 yy,表示查询从点 xx 到点 yy 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n,m,kn,m,k。

接下来 mm 行,每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。

接下来 kk 行,每行包含两个整数 x,yx,y,表示询问点 xx 到点 yy 的最短距离。

输出格式

共 kk 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1≤n≤200 1≤n≤200,
1≤k≤n2 1≤k≤n2
1≤m≤20000 1≤m≤20000,
图中涉及边长绝对值均不超过 1000010000。

输入样例:

3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3

输出样例:

impossible
1

代码: 

#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int N=205;
int n,m,k,x,y,z,e[N][N];
int main(){
	scanf("%d%d%d",&n,&m,&k);
	for(int i=1;i<=n;i++)		//初始化 
		for(int j=1;j<=n;j++)
			e[i][j]=i==j?0:INF;
			
	for(int i=0;i<m;i++){
		scanf("%d%d%d",&x,&y,&z);
		e[x][y]=min(e[x][y],z);
	}
	for(int k=1;k<=n;k++){
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
                if(e[i][k]==INF||e[k][j]==INF) continue;	//防止负权影响INF,或者在输出的时候判断e[x][y]>INF/2 
				if(e[i][j]>e[i][k]+e[k][j])
					 e[i][j]=e[i][k]+e[k][j];
//				e[i][j]=min(e[i][j],e[i][k]+e[k][j]);	//数据量大时,min会慢一些 
			}
		}
	}
	while(k--){
		scanf("%d%d",&x,&y);
		if(e[x][y]==INF) cout<<"impossible"<<endl;	//存在负权时,如果不存在通路,不一定是INF,会小一些 
		else cout<<e[x][y]<<endl;
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值