AcWing241. 楼兰图腾(树状数组)

文章讨论了一种在大数据量下优化算法复杂度的方法,通过使用树状数组来降低查询和计算的时间复杂度,从而解决数组中以某点为最低点的V的数量问题,避免了O(n^2)的超时情况。主要涉及数组的左右侧大数计数及乘积求和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

输入样例:
5
1 5 3 2 4
输出样例:
3 4

 解析:

        以某个点 i 为最低点的 V 的数量,为 i 左侧和右侧比 a[ i ] 大的数量 a,b 的乘积。

        但是,直接求这两个数的复杂度为O(n),则整个复杂度为O( n^2 ),数据量2e5超时。

        所以需要将查询a,b两个数的复杂度讲到 logn 以下。

        树状数组的下标储存 a[ i ],值储存 a[ i ] 的个数,所以,先计算 a[ i ] 左侧比 a[ i ] 大的数量,再计算右侧的数量,乘积加和即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+5;
int n,great[N],low[N],c[N],a[N];
int lowbit(int x){return x&-x;}
void add(int x){
	for(int i=x;i<=n;i+=lowbit(i)) c[i]+=1;
}
int sum(int x,int y){
	int res=0;
	for(int i=y;i;i-=lowbit(i)) res+=c[i];
	for(int i=x-1;i;i-=lowbit(i)) res-=c[i];
	return res;
}
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	for(int i=1;i<=n;i++){
		great[i]=sum(a[i]+1,n);	//计算 i 左侧大于a[i]的数量 
		low[i]=sum(1,a[i]-1);	//计算 i 左侧小于a[i]的数量
		add(a[i]);
	}
	ll cnt1=0,cnt2=0;
	memset(c,0,sizeof c);
	for(int i=n;i;i--){
		cnt1+=great[i]*(ll)sum(a[i]+1,n);
		cnt2+=low[i]*(ll)sum(1,a[i]-1);
		add(a[i]);
	}
	cout<<cnt1<<" "<<cnt2;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值