题面翻译
【题目描述】
定义正整数 x x x 的 “数字乘积” f ( x ) f(x) f(x) 为其所有数字的乘积。例如, f ( 1234 ) = 1 × 2 × 3 × 4 = 24 f(1234) = 1 \times 2 \times 3 \times 4 = 24 f(1234)=1×2×3×4=24, f ( 100 ) = 1 × 0 × 0 = 0 f(100) = 1 \times 0 \times 0 = 0 f(100)=1×0×0=0。
给定两个整数 l l l 和 r r r,请计算以下值:
( ∏ i = l r f ( i ) ) m o d ( 1 0 9 + 7 ) (\prod_{i=l}^r f(i)) \mod (10^9+7) (i=l∏rf(i))mod(109+7)
如果你不知道 ∏ \prod ∏ 表示什么,上述表达式等同于
( f ( l ) × f ( l + 1 ) × ⋯ × f ( r ) ) m o d ( 1 0 9 + 7 ) (f(l) \times f(l+1) \times \dots \times f(r)) \mod (10^9+7) (f(l)×f(l+1)×⋯×