Python获取谷歌学术的文献引用量等信息 | scholarly & SerpAPI

摘要:在科研文献管理中,研究人员常常需要维护自己的文献数据库。不同的人可能使用不同的工具来管理文献,例如Excel表格、Notion、飞书等。然而,这些工具往往无法实时更新文章的引用量信息。我通过 scholarly Google Scholar API 两种方法,实现Python自动化脚本获取文章在谷歌学术上的引用量等信息,从而高效地更新自己的文献数据库。

输入:文献标题

输出:文献作者、年份、引用次数等信息

优势:Python批量处理,实现大批量数据库更新


方法一:scholarly(推荐)

Scholarly 是一个 Python 包,用于访问和解析 Google Scholar 的数据。它允许用户自动化地获取学术论文的信息,包括作者、标题、引用次数等。

1. 安装库函数

pip install scholarly

2. 查询单篇文献信息

from scholarly import 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值