卷积神经网络用的其实不是卷积运算,实际用的是互相关运算;互相关运算和卷积运算的区别在于对输入结果所加的权重系数的顺序不同而已,但由于神经网络本身就是训练参数的,所以两者的输出结果其实是一样的,而互相关运算相比卷积运算由于权重系数(卷积核)无需翻转,更加简单,所以实际的卷积网络都是基于互相关运算的;
互相关运算和卷积一维计算原理:
这里先从一维的开始介绍,方便大家理解;给定一维序列和一维序列,
则互相关序列为:
其中的元素为:
卷积神经网络用的其实不是卷积运算,实际用的是互相关运算;互相关运算和卷积运算的区别在于对输入结果所加的权重系数的顺序不同而已,但由于神经网络本身就是训练参数的,所以两者的输出结果其实是一样的,而互相关运算相比卷积运算由于权重系数(卷积核)无需翻转,更加简单,所以实际的卷积网络都是基于互相关运算的;
互相关运算和卷积一维计算原理:
这里先从一维的开始介绍,方便大家理解;给定一维序列和一维序列,
则互相关序列为:
其中的元素为: