卷积神经网络互相关运算和卷积运算原理

本文介绍了卷积神经网络实际采用的互相关运算,而非传统意义上的卷积运算。两者区别仅在于权重系数顺序,但在神经网络中权重可训练,故互相关运算更简便。通过一维互相关和卷积运算的计算实例,阐述了它们的运算规则,并指出在神经网络中,由于权重可学习,互相关与卷积并无实质性差异。后续将探讨高维情况下的运算原理。
摘要由CSDN通过智能技术生成

       卷积神经网络用的其实不是卷积运算,实际用的是互相关运算;互相关运算和卷积运算的区别在于对输入结果所加的权重系数的顺序不同而已,但由于神经网络本身就是训练参数的,所以两者的输出结果其实是一样的,而互相关运算相比卷积运算由于权重系数(卷积核)无需翻转,更加简单,所以实际的卷积网络都是基于互相关运算的;

       互相关运算和卷积一维计算原理:

       这里先从一维的开始介绍,方便大家理解;给定一维序列W=(\ldots ,w[-1],w[0],w[1],\ldots )\和一维序列X=(\ldots ,x[-1],x[0],x[1],\ldots )\,

则互相关序列为:

W\star X=(\ldots ,(w\star x)[-1],(w\star x)[0],(w\star x)[1],\ldots )\

其中的元素为:

(w\star x)[i]=\sum\limits_{t=-\infty }^{+\infty }{w[i+t]x[t]}\

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值