题目描述
给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。
不允许修改 链表。
算法思路
- 一个指针为慢指针,一次走一步
一个指针为快指针,一次走两步 - v1=1,v2=2由相对速度得,以慢指针为参考系v=1
若存在环,则有,循环一圈快指针追上慢指针 - 则有相对路程为一个圈
Xfast-Xslow=L环
2Xslow-Xslow=L环
Xslow=L环,慢指针走过距离为一个环 - 固有慢指针再走L无环就可以走完整个链表回到入环点
在fast与slow相遇的时候,再设置一个指针从头以v1出发
当该指针走完L无环时,到达入环点,慢指针恰好走完整个环,也到达入环点
此时两指针相遇,得出环的起始位置
算法实现
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode *fast=head,*slow=head,*cur=head;
while(1){
//如果没有环
if(!fast||!(fast->next)) return NULL;
fast=fast->next->next;
slow=slow->next;
if(fast==slow) break;//快慢相遇
}
while(cur!=slow){//野指针出发
cur=cur->next;
slow=slow->next;
}
return cur;
}
};
算法分析
空间复杂度为O(1)
时间复杂度为O(n)
一般常规解决方法会采用哈希表记录每一个走过的结点