KNN分类算法原理及其Matlab实现

KNN算法原理

K近邻算法是一种简单的监督学习算法。对于给定测试样本,直接计算该样本和训练集的距离,将距离最近的k个“邻居”点的类别作为参考,作为预测结果返回。

测试数据

测试数据来自林智仁的分类任务数据集,链接:(https://www.csie.ntu.edu.tw/~cjlin/)

代码

matlab版本:matlab R2017a

function KNN()

clear all;
clc;
kk=2;%knn中k的取值
M=load("D:\毕业设计\数据集1\australian.txt"); %装载数据集
[m,n]=size(M);

indices=crossvalind('Kfold',M(1:m,n),10); %十折交叉,划分训练集和测试集
testindices=(indices==1); %测试集索引
trainindices=~testindices;%训练集索引
trainset=M(trainindices,:); %获取训练集
testset=M(testindices,:);%获取测试集
[testm,~]=size(testset);
[trainm,trainn]=size(trainset);

knnlabel=zeros(testm,1);%knn得到的标签
distancev=zeros(trainm,1);%每个测试点与训练集的欧式距离向量
for i=1:testm   
    for j=1:trainm
        distancev(j)=0;
        for k=1:tr
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值