KNN算法原理
K近邻算法是一种简单的监督学习算法。对于给定测试样本,直接计算该样本和训练集的距离,将距离最近的k个“邻居”点的类别作为参考,作为预测结果返回。
测试数据
测试数据来自林智仁的分类任务数据集,链接:(https://www.csie.ntu.edu.tw/~cjlin/)
代码
matlab版本:matlab R2017a
function KNN()
clear all;
clc;
kk=2;%knn中k的取值
M=load("D:\毕业设计\数据集1\australian.txt"); %装载数据集
[m,n]=size(M);
indices=crossvalind('Kfold',M(1:m,n),10); %十折交叉,划分训练集和测试集
testindices=(indices==1); %测试集索引
trainindices=~testindices;%训练集索引
trainset=M(trainindices,:); %获取训练集
testset=M(testindices,:);%获取测试集
[testm,~]=size(testset);
[trainm,trainn]=size(trainset);
knnlabel=zeros(testm,1);%knn得到的标签
distancev=zeros(trainm,1);%每个测试点与训练集的欧式距离向量
for i=1:testm
for j=1:trainm
distancev(j)=0;
for k=1:tr