随机森林原理及其用于分类问题的matlab实现

随机森林

随机森林是多个决策树的集成学习,每个决策树用bagging的方法选数据集,并且在选择最佳属性划分的时候随机划分一些属性进行分类,比单个分类器效果更好,泛化能力更强。

代码解释

1.用结构体的嵌套实现树的结构。
2.makerandomtree递归的创建树。
3.可自动适应不同的类别标签,不同的属性个数和不同的类别个数。
4.函数ent(D)返回D的信息熵。

代 码

树的主体:

function tree=makerandomtree(D,a) 
tree=struct('isnode',1,'a',0.0,'mark',0.0,'child',{});%isnode判断是否是分支还是叶子,a表示节点属性,若节点是叶子,a表示分类结果,child是孩子
tree(1).a=1;%给tree分配一个确切的内存
if length(unique(D(:,end)))==1%D中样本属于同一类别
    tree.isnode=0;%把tree标记为树叶
    tree.a=D(1,end);%把tree的类别标记为D的类别
    return
end
if sum(a)==0 ||length(D)==0 %属性划分完毕
    tree.isnode=0;%把tree标记为树叶
    tree.a=mode(D(:,end));%把tree的类别标记为D出现最多的类别
    return
end
for i=1:length(a)
    if a(i)==1
        if length(uniq
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值