随机森林
随机森林是多个决策树的集成学习,每个决策树用bagging的方法选数据集,并且在选择最佳属性划分的时候随机划分一些属性进行分类,比单个分类器效果更好,泛化能力更强。
代码解释
1.用结构体的嵌套实现树的结构。
2.makerandomtree递归的创建树。
3.可自动适应不同的类别标签,不同的属性个数和不同的类别个数。
4.函数ent(D)返回D的信息熵。
代 码
树的主体:
function tree=makerandomtree(D,a)
tree=struct('isnode',1,'a',0.0,'mark',0.0,'child',{});%isnode判断是否是分支还是叶子,a表示节点属性,若节点是叶子,a表示分类结果,child是孩子
tree(1).a=1;%给tree分配一个确切的内存
if length(unique(D(:,end)))==1%D中样本属于同一类别
tree.isnode=0;%把tree标记为树叶
tree.a=D(1,end);%把tree的类别标记为D的类别
return
end
if sum(a)==0 ||length(D)==0 %属性划分完毕
tree.isnode=0;%把tree标记为树叶
tree.a=mode(D(:,end));%把tree的类别标记为D出现最多的类别
return
end
for i=1:length(a)
if a(i)==1
if length(uniq