【LeetCode】120. Triangle

10 篇文章 0 订阅

Difficulty: Medium

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.


f[i][j]表示从(0,0)走到(i,j)的最小和

状态转移方程:

f[i][0]=f[i-1][0]+triangle[i][0]

f[i][j]=min(f[i-1],[j-1],f[i-1][j]) + triangle[i][j]

f[i][i]=f[i-1][i-1] + triangle[i][i]

时间复杂度O(n * n)

实现O(n) extra space只需要用滚动数组就可以了,见代码


class Solution {
public:
int minimumTotal(vector<vector<int> >& triangle) {
	int i,j,k,n;
	n=triangle.size();
	vector<int> f[2];
	f[0].resize(n);
	f[1].resize(n);
	f[0][0]=triangle[0][0];
	
	for(i=k=1;i<n;i++,k=1-k)
	{
		f[k][0]=f[1-k][0] + triangle[i][0];
		f[k][i]=f[1-k][i-1] + triangle[i][i];
		for(j=1;j<i;j++)
			f[k][j]=min(f[1-k][j-1],f[1-k][j])+triangle[i][j];
	}
	
	int res=f[1-k][0];
	for(i=1;i<n;i++)
		res=min(res,f[1-k][i]);
	return res;
}
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值