- 子矩阵求和 (Standard IO)
时间限制: 1000 ms 空间限制: 262144 KB 具体限制
题目描述
给出一个n行m列的矩阵,矩阵的每个位置有一个非负整数a[i][j],有q次询问,每次询问求一个左上角为(a,b),右下角为(c,d)的子矩阵的所有数之和。
输入
第一行两个整数n,m,表示矩阵的行和列的大小
接下来n行每行m个整数,为矩阵内容
接下来一行为一个整数q,表示询问次数
接下来q行每行4个整数a,b,c,d,含义见题面。
输出
共q行,第i行为第i个询问的答案。
样例输入
3 5
1 2 3 4 5
3 2 1 4 7
2 4 2 1 2
3
1 1 3 5
2 2 3 3
1 1 3 3
样例输出
43
9
20
数据范围限制
n*m<=100,000,a[i][j]<=1000,q<=100,000,1<=a<=c<=n,1<=b<=d<=m
思路:
1.如果直接开二维数组会导致内存炸裂,所以转成一维数组,具体看代码。
2.输入时直接算出矩阵和的值,比如下图中你要输入x的值,你可以直接求出x位置的左上角的矩阵的和,具体看代码,输出时可进行算法转换。
3.输出操作:
当你要输出这个之间的矩阵和时,只需将(c,d)矩阵的值减去阴影部分举证面积,具体看代码。
代码:
#include<bits/stdc++.h>
#define LL long long
using namespace std;
//vector<int> a[100];
int sum[200002];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
//cin>>n>>m;
int x;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&x);
sum[i*m+j]=sum[(i-1)*m+j]+sum[i*m+j-1]-sum[(i-1)*m+j-1]+x;
}
}
int t,a,b,c,d;
scanf("%d",&t);
while(t--){
//int sum=0;
scanf("%d%d%d%d",&a,&b,&c,&d);
printf("%d\n",sum[c*m+d]-sum[c*m+b-1]-sum[(a-1)*m+d]+sum[(a-1)*m+b-1]);
}
return 0;
}
哎