A Simple Problem with Integers POJ 3468

线段树

抄的博客

#include<cstdio>
#include<algorithm>
#include<iostream>

using namespace std;
const int MAXN=100000;
int num[MAXN];
struct Node
{
    int l,r;//区间的左右端点
long long nSum;//区间上的和
long long Inc;//区间增量的累加 
}segTree[MAXN*3];
void Build(int i,int l,int r)
{
    segTree[i].l=l;
    segTree[i].r=r;
    segTree[i].Inc=0;
    if(l==r)
    {
        segTree[i].nSum=num[l];
        return;
    }    
    int mid=(l+r)>>1;
    Build(i<<1,l,mid);
    Build(i<<1|1,mid+1,r);
    segTree[i].nSum=segTree[i<<1].nSum+segTree[i<<1|1].nSum;
} 
void Add(int i,int a,int b,long long c)//在结点i的区间(a,b)上增加c
{
    if(segTree[i].l==a&&segTree[i].r==b)
    {
        segTree[i].Inc+=c;
        return;
    }
    segTree[i].nSum+=c*(b-a+1);
    int mid=(segTree[i].l+segTree[i].r)>>1;
    if(b<=mid)  Add(i<<1,a,b,c);
    else if(a>mid)  Add(i<<1|1,a,b,c);
    else
    {
        Add(i<<1,a,mid,c);
        Add(i<<1|1,mid+1,b,c);
    }        
}  
long long Query(int i,int a,int b)//查询a-b的总和
{
    if(segTree[i].l==a&&segTree[i].r==b)
    {
        return segTree[i].nSum+(b-a+1)*segTree[i].Inc;
    }  
    segTree[i].nSum+=(segTree[i].r-segTree[i].l+1)*segTree[i].Inc;
    int mid=(segTree[i].l+segTree[i].r)>>1;
    Add(i<<1,segTree[i].l,mid,segTree[i].Inc);
    Add(i<<1|1,mid+1,segTree[i].r,segTree[i].Inc);
    segTree[i].Inc=0;
    if(b<=mid)  return Query(i<<1,a,b);
    else if(a>mid)  return Query(i<<1|1,a,b);
    else return Query(i<<1,a,mid)+Query(i<<1|1,mid+1,b);
}  
int main()
{
    int n,q;
    int i;
    int a,b,c;
    char ch;
    while(scanf("%d%d",&n,&q)!=EOF)
    {
        for(i=1;i<=n;i++)  scanf("%d",&num[i]);
        Build(1,1,n);
        for(i=1;i<=q;i++)
        {
            cin>>ch;
            if(ch=='C')
            {
                scanf("%d%d%d",&a,&b,&c);
                Add(1,a,b,c);
            }    
            else
            {
                scanf("%d%d",&a,&b);
                printf("%I64d\n",Query(1,a,b));
            }    
        }    
    } 
    return 0;   
}

树状数组

原博客

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>

using namespace std;

const int MAXN=101000;

long long a[MAXN<<1];
long long b[MAXN<<1];
long long pos[MAXN<<1];
int n;

int lowbit(int x)
{
	return x&(-x);
}

void update(long long *arry,int x,int d)
{
	while(x<=n)
	{
		arry[x]+=d;
		x+=lowbit(x);
	}
}

long long add(long long *arry,int x)
{
	long long sum=0;
	while(x>0)
	{
		sum+=arry[x];
		x-=lowbit(x);
	}
	return sum;
}

int main()
{
	int k;
	int x,y,z;
	scanf("%d%d",&n,&k);
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	memset(pos,0,sizeof(pos));
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&x);
		pos[i]+=pos[i-1]+x;
	}
	char c;
	while(k--)
	{
		cin>>c;
		if(c=='C')
		{
			scanf("%d%d%d",&x,&y,&z);
			update(a,x,z);
			update(a,y+1,-z);
			update(b,x,z*x);
			update(b,y+1,-z*(y+1));
		}
		else
		{
			scanf("%d%d",&x,&y);
			long long sum=-pos[x-1]-x*add(a,x-1)+add(b,x-1);
			sum+=pos[y]+(y+1)*add(a,y)-add(b,y);
			printf("%I64d\n",sum);
		}
	}
	return 0;
}

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值