hdoj5402 【模拟/构造】

26 篇文章 0 订阅

题意:
给你一个矩阵,每个值都是非负,然后让你从左上角走到右下角,每个点只能走一次,求到终点的最大值,还要输出一条路径

思路:
一开始拿到还以为搜索之类的,但是发现神特么暴力+麻烦(因为路径这个东西。。。),虽然路径现在也是能写,但是开个数组。。。还是嫌麻烦。题意给出的非负的,而且如果矩阵的行或列是奇数的时候就一定能走完,具体走法,还是具体实现就好了。但是偶行偶列不行,后来想了一个是不是全部值-一个最小。。。随便举个反例就会知道,这个存在最小的绕不过去,还得搭上旁边的几个,所以才有了正确的解法,我们先去找那些能绕过去的位置,也就是饶过他,我可以通过其他的点走到右下角。
然后就是这样。。。。

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

0表示可以绕过去,也就是除了他我可以走完。

那么就在能绕过去那边找一个最小的,为什么这样就是对的呢,如果我绕过的是不能除了他就走完的位置的话,那势必会减少至少一个旁边的位置,所以我去找最小可以绕过的位置,然后饶过他,就是正确的方法。
然后我们只要去判断这个最小在哪一行就好了,最好就是两行,因为从起点出去,那个点在0位置的话,我们可以选定两行发现是一定满足从左上进,右下出,那么在这个两行前面的行我们就是右 下 左 再下,两行下面的行就是左 下 右 ,看情况再下,就是这样。。。

说的不好,但是代码还是很清楚的。。。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

const int INF=1e4+10;
const int N=1e2+10;
int ma[N][N];

int main()
{
    int n,m,sum;
    int tmin;
    int i,j;
    int x,y;
    while(~scanf("%d%d",&n,&m))
    {
        tmin=INF;
        sum=0;
        for(i=1; i<=n; i++)
        {
            for(j=1; j<=m; j++)
            {
                scanf("%d",&ma[i][j]);
                sum+=ma[i][j];
                if(m%2==0 && n%2==0)
                {
                    if(i%2==0 && j%2!=0)
                    {
                        if(ma[i][j]<tmin)
                        {
                            tmin=ma[i][j];
                            x=i;
                            y=j;
                        }
                    }
                    if(i%2!=0 && j%2==0)
                    {
                        if(ma[i][j]<tmin)
                        {
                            tmin=ma[i][j];
                            x=i;
                            y=j;
                        }
                    }
                }
            }
        }
        if(n%2!=0)
        {
            printf("%d\n",sum);
            for(i=1; i<=n; i++)
            {
                if(i%2!=0)
                {
                    for(j=1; j<=m-1; j++)
                        printf("R");
                }
                if(i%2==0)
                {
                    for(j=1; j<=m-1; j++)
                        printf("L");
                }
                if(i==n && j==m)
                    break;
                else
                    printf("D");
            }
        }
        else if(m%2!=0)
        {
            printf("%d\n",sum);
            for(i=1; i<=m; i++)
            {
                if(i%2!=0)
                {
                    for(j=1; j<=n-1; j++)
                        printf("D");
                }
                if(i%2==0)
                {
                    for(j=1; j<=n-1; j++)
                        printf("U");
                }
                if(i==m && j==n)
                    break;
                else
                    printf("R");
            }
        }
        else
        {
            printf("%d\n",sum-tmin);

            for(i=1; i<=n; i+=2)
            {
                if(x==i || x==i+1)
                {
                    //上下
                    for(j=1; j<y; j++)
                    {
                        if(j%2!=0)
                            printf("D");
                        else
                            printf("U");

                        printf("R");
                    }

                    if(y<m)
                        printf("R");

                    //上下
                    for(j=y+1; j<=m; j++)
                    {
                        if(j%2!=0)
                            printf("U");
                        else
                            printf("D");
                        if(j<m)
                            printf("R");
                    }
                    if(i<n-1)
                        printf("D");
                }
                else if(x<i)//左下右
                {
                    for(j=1; j<m; j++)
                        printf("L");
                    printf("D");
                    for(j=1; j<m; j++)
                        printf("R");

                    if(i<n-1)
                        printf("D");
                }
                else//右下左
                {
                    for(j=1; j<m; j++)
                        printf("R");
                    printf("D");
                    for(j=1; j<m; j++)
                        printf("L");

                    printf("D");
                }
            }
        }
        printf("\n");
    }
    return 0;
}


/*



4 4
5 5 5 5
1 5 5 5
5 5 5 5
5 5 5 5

4 4
5 1 5 5
5 5 5 5
5 5 5 5
5 5 5 5


*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值