文章目录
1 string类型
1.1 string与object的区别
string类型和object有三个不同之处:
- 字符存取方法(如str.count)会返回相应数据的Nullable类型,而object会随缺失值的存在而改变返回类型
- 某些Series方法不能在string上使用,例如:
Series.str.decode()
,因为存储的是字符串而不是字节 - string类型在缺失值存储或运算时,类型会广播为pd.NA,而不是浮点型
np.nan
1.2 string类型的转换
其他类型的容器不能直接转换string类型,可能会出错:
#pd.Series([1,'1.']).astype('string') #报错
#pd.Series([1,2]).astype('string') #报错
#pd.Series([True,False]).astype('string') #报错
可以分两部转换,先转为str
型object,再转为string类型:
pd.Series([1,'2.']).astype('str').astype('string')
0 1
1 2.
dtype: string
2 string类型的一些操作
2.1 拆分(str.split
方法)
(a)分割符与str的位置元素选取
s = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'], dtype="string")
s.str.split('_') # 根据某一个元素分割,默认为空格
0 [a, b, c]
1 [c, d, e]
2 <NA>
3 [f, g, h]
dtype: object
注意:
split
后的类型是object,因为现在Series中的元素已经不是string,而包含了list,且string类型只能含有字符串
str方法可以进行元素的选择:
- 如果该单元格元素是列表,那么
str[i]
表示取出第i
个元素; - 如果是单个元素,则先把元素转为列表再取出
s.str.split('_').str[1]
0 b
1 d
2 <NA>
3 g
dtype: object
pd.Series(['a_b_c', ['a','b','c']], dtype="object").str[1]
#第一个元素先转为['a','_','b','_','c']
0 _
1 b
dtype: object
(b)其他参数
expand
参数控制了是否将列拆开,n
参数代表最多分割多少次
s.str.split('_',expand=True)
0 | 1 | 2 | |
---|---|---|---|
0 | a | b | c |
1 | c | d | e |
2 | <NA> | <NA> | <NA> |
3 | f | g | h |
s.str.split('_',n=1)
0 [a, b_c]
1 [c, d_e]
2 <NA>
3 [f, g_h]
dtype: object
s.str.split('_',expand=True,n=1)
0 | 1 | |
---|---|---|
0 | a | b_c |
1 | c | d_e |
2 | <NA> | <NA> |
3 | f | g_h |
2.2 拼接(str.cat
方法)
(a)不同对象的拼接模式
cat方法的对象包括:单列、双列、多列,其作用结果并不相同
- 对单个Series而言,就是指所有的元素进行字符合并为一个字符串。其中可选分隔符
sep
参数、缺失值替代字符na_rep
参数
s = pd.Series(['ab',None,'d'],dtype='string')
s.str.cat()
'abd'
s.str.cat(sep=',')
'ab,d'
s.str.cat(sep=',',na_rep='*')
'ab,*,d'
- 对两个Series合并而言,是对应索引的元素进行合并
s2 = pd.Series(['24',None,None],dtype='string')
s