有幸在旷视科技的大佬推荐下自学吴恩达(Andrew Ng)的机器学习课,小小地总结一下最近都学了点啥~
Week 1
1. 单变量线性回归(Linear Regression with One Variable)
2. 梯度下降法(Gradient Descent)
3. 线性代数相关介绍(矩乘、求逆、转置)
Week 2
1. 多变量线性回归(Multivariate Linear Regression)
2. 正规方程法(Normal Equation)
3. Octave/Matlab基本操作介绍
Week 3
1. 逻辑回归(Logistic Regression)
2. 正则化解决过拟合(Regularization, Overfitting)
Week 4
1. 神经网络的结构(Neural Networks)
2. 神经网络的应用
Week 5
1. 神经网络BP算法(Backpropagation)
2. BP算法的实践(参数展开、梯度检查、随机初始化)
Week 6
1. 模型选择,验证集(Cross Validation Set)
2. 偏差与方差(Bias vs. Variance)
3. 查准率与查全率(Precision and Recall)
Week 7
1. 支持向量机(Support Vector Machines)
Week 8
1. K均值聚类算法(K-Means)
......