上节埋坑这节填,这节主要讲光源。
光源是照明系统中的重要组成部分,不同的工业场景需要选择适合的光源。
一、光源选型的基本原则
主要看重5个方面:波长、亮度、均匀性、稳定性和寿命、功率和能耗。
以下是工业中常用的几种光源及它们的优劣对比。
二、工业场景常见光源
1. 白炽灯
波长:主要集中在红外和可见光部分,波长范围为380nm-700nm。
亮度:较高,但随着温度升高亮度会下降。
均匀性:低,因为灯光在灯泡内部时光线无法均匀分布。
稳定性:低,因为白炽灯的发光效率随着工作时间和温度变化而变化。
寿命:短,正常工作条件下寿命约为1000-2000小时。
功率和能耗:较高,因为白炽灯的热损失和效率低,导致能耗大。
2. 卤素灯
波长:主要集中在可见光部分,波长范围为380nm-720nm。
亮度:较高,因为卤素灯的热效率更高。
均匀性:较好,因为卤素灯的光线分布更均匀。
稳定性:高,因为卤素灯的发光效率相对稳定。
寿命:相对较长,约为3000-4000小时。
功率和能耗:较高,但相对于白炽灯有所改善。
3. 荧光灯
波长:主要集中在可见光部分,波长范围为380nm-720nm。
亮度:较高,但发光效率较低。
均匀性:较好,因为荧光灯采用的是汞蒸气弧光灯技术。
稳定性:较好,因为荧光灯的发光效率相对稳定。
寿命:较长,约为6000-10000小时。
功率和能耗:相对较低,因为荧光灯的发光效率较高。
4. LED(发光二极管)灯
波长:可控制在红、橙、黄、绿、蓝、靛、紫等不同颜色,波长范围为380nm-1000nm。
亮度:较高,发光效率可超过100lm/W。
均匀性:较好,因为LED灯采用的是自发光技术。
稳定性:高,因为LED灯的发光效率相对稳定。
寿命:较长,一般为50000-100000小时。
功率和能耗:较低,因为LED灯的发光效率高。
5. 激光灯
波长:由激光二极管产生,波长范围可达到1064nm-1720nm。
亮度:非常高,因为激光灯的发光效率极高。
均匀性:较好,因为激光灯的光线分布可精确控制。
稳定性:非常高,因为激光灯的发光效率非常稳定。
寿命:较长,一般可达到数万小时。
功率和能耗:相对较低,因为激光灯的发光效率高。
6. 太阳能灯
波长:主要集中在可见光和近红外光部分,波长范围为380nm-1000nm。
亮度:取决于太阳能电池板的输出功率和灯的能耗。
均匀性:取决于灯具设计和太阳能电池板的位置。
稳定性:高,因为太阳能灯不依赖外部电源。
寿命:较长,一般在5-10年左右,但取决于使用环境和维护情况。
功率和能耗:较低,因为太阳能灯的能耗来自太阳能电池板。
7. 高压钠灯
波长:主要集中在可见光部分,波长范围为380nm-1000nm。
亮度:高,但热损耗大。
均匀性:较好,因为高压钠灯的光线分布更均匀。
稳定性:较高,因为高压钠灯的发光效率相对稳定。
寿命:一般在3000-4000小时。
功率和能耗:较高,因为高压钠灯的热损耗大。
8. 氙气灯
波长:主要集中在可见光部分,波长范围为380nm-1000nm。
亮度:非常高,热损耗低。
均匀性:好,因为氙气灯的光线分布更均匀。
稳定性:高,因为氙气灯的发光效率非常稳定。
寿命:一般在1000-3000小时。
功率和能耗:较高,因为氙气灯的热损耗低。
9. 钠铊铟灯
波长:主要集中在紫外光部分,波长范围为200nm-400nm。
亮度:高,但光效较低。
均匀性:较好,因为钠铊铟灯的光线分布更均匀。
稳定性:较高,因为钠铊铟灯的发光效率相对稳定。
寿命:一般在2000-5000小时。
功率和能耗:较高,因为钠铊铟灯的热损耗大。
通过以上对比,可以看出不同光源在波长、亮度、均匀性、稳定性和寿命、功率和能耗等方面各有优缺点,适用于不同的应用场景。例如,白炽灯适合用于小范围的局部照明;荧光灯适合用于大面积的照明;LED灯适合用于需要高亮度和长寿命的应用;太阳能灯适用于户外照明;氙气灯适用于高速交通工具的远光灯和高速公路上的道路照明;钠铊铟灯适用于特殊环境下的照明。在选择光源时,需要根据实际需求和应用场景来选择合适的光源。
三、常用光源的优劣势
接下来说说常用的光源类型及其各自的优劣势:
1. 自然光:
优点:成本低,来源广泛。
缺点:光照不稳定,图像质量受天气影响。
2. 背光:
优点:能够突出物体表面特征,易于对物体进行定位。
缺点:容易产生阴影,需要针对具体问题进行调整。
3. 透射光(白光):
优点:能够提供均匀的照明效果,适用于对颜色敏感的应用场景。
缺点:可能导致亮度过高,需要选择合适的光源强度。
4. 漫反射光源:
优点:能够均匀地照亮场景,适用于不同角度的成像。
缺点:光照强度可能不足,需要考虑不同的光源密度。
5. 点光源:
优点:能够突出物体表面的特定区域,适用于对细节要求较高的场景。
缺点:光照强度可能不均匀,需要注意调整光源位置。
6. 条形光源:
优点:能够均匀地照亮长条状物体,适用于对长宽比敏感的场景。
缺点:可能在边缘产生阴影,需要针对具体问题进行调整。
7. 环境光抑制(AE)光源:
优点:能够减少环境光对图像质量的影响,适用于高对比度场景。
缺点:可能增加物体表面的光噪声,需要谨慎使用。
8. 光场相机:
优点:能够同时获取物体表面的多个方向的光线信息,适用于需要三维重建的场景。
缺点:价格昂贵,技术尚未完全成熟。
在选择光源时,需要根据实际应用场景和需求来权衡各种光源的优劣势。同时,还需要注意光源的稳定性、寿命等方面的问题。
四、常见光源应用场景及优劣
以下是一些常见的光源应用场景以及它们的优劣:
1. 表面检测:
透射光和背光是常用的光源类型。它们可以突出物体表面的特征,有助于检测物体表面的缺陷和纹理。然而,背光可能会产生阴影,而透射光需要确保光源均匀地照亮整个物体表面。
2. 尺寸和位置测量:
点光源和条形光源可以突出物体的边缘,有助于进行尺寸和位置的测量。然而,它们可能会在物体表面产生不均匀的光照,需要进行适当的调整。
3. 颜色检测:
白光和漫反射光源可以提供均匀的光照,有助于检测物体表面的颜色。然而,它们可能会在物体表面产生反光,需要考虑调整光源的强度和角度。
4. 识别和分类:
背光和透射光可以帮助突出物体表面的特征,有助于进行识别和分类。然而,它们可能会在物体表面产生阴影,需要进行适当的处理。
5. 三维重建:
环境光抑制(AE)光源可以减少环境光对图像质量的影响,有助于进行三维重建。然而,它们可能会增加物体表面的光噪声,需要谨慎使用。
6. 拼接和合成:
点光源和条形光源可以突出物体的边缘,有助于进行拼接和合成。然而,它们可能会在物体表面产生不均匀的光照,需要进行适当的调整。
在实际应用中,可能需要综合使用多种光源类型和调整参数,以获得最佳的视觉效果。此外,根据不同的应用场景和需求,还可以考虑使用定制的光源和辅助设备,以满足特殊需求。
五、光源选择补充说明
1. 了解待测物体:
在选择光源之前,了解待测物体的材质、颜色、纹理和表面特性是非常重要的。这些信息将有助于您选择适当的光源类型和参数。
2. 考虑光照条件:
不同的环境光照条件对光源的选择和调整具有重要影响。因此,在选择和使用光源时,要考虑现场的实际光照条件。
3. 光源稳定性:
选择具有稳定光源输出的光源设备,以确保获取高质量的图像。
4. 光源寿命:
了解光源设备的寿命,并确保在设备更换之前,您的项目能够顺利完成。
5. 光源角度:
调整光源的角度,以获得最佳的照明效果。光源角度的调整可能涉及旋转光源设备或调整摄像机的位置。
6. 光源功率:
根据实际需求和应用场景,选择合适的光源功率。功率过低可能无法提供足够的光照,而功率过高可能导致设备过热。
7. 对比度和噪声:
了解光源对图像对比度和噪声的影响。对比度过低的光源可能导致图像模糊,而噪声过高的光源可能影响图像质量。
8. 考虑热像仪的使用:
在使用热像仪时,要考虑环境温度对光源温度的影响。过高的环境温度可能导致光源发热,从而影响热像仪的工作。
9. 避免过度曝光:
在使用光源时,要注意避免过度曝光。过度曝光可能导致图像过亮,丢失细节信息。
10. 评估效果:
在选择和使用光源后,对图像质量进行评估。如果效果不理想,可以尝试调整光源参数或更换其他类型的光源。
综上所述,选择和使用合适的光源是机器视觉项目中非常重要的一环。通过充分了解待测物体、考虑光照条件、选择稳定的光源设备等措施,可以帮助您获得高质量的图像,从而提高机器视觉系统的性能。
六、其他影响因素
在机器视觉中,除了光源的选择,还有许多其他的关键因素会影响到系统的性能,这些因素包括:
1. 摄像机:
摄像机的分辨率、帧率和曝光时间对图像质量有很大影响。高质量的摄像机可以捕捉到更多的细节信息,有助于提高系统的性能。
2. 镜头:
镜头的分辨率、景深和畸变对图像质量也有很大影响。选择合适的镜头可以提高图像的质量,从而提高系统的性能。
3. 图像采集卡:
图像采集卡可以将摄像机的图像信号转换为计算机可以处理的数字信号。选择合适的图像采集卡可以确保图像信号的质量,从而提高系统的性能。
4. 图像处理算法:
图像处理算法是机器视觉系统中的关键部分,它可以对采集到的图像进行处理,以提取有用的信息。选择合适的图像处理算法可以提高系统的性能。
5. 数据融合:
数据融合技术可以将来自不同传感器的数据进行整合,以提供更全面的信息。选择合适的数据融合技术可以提高系统的性能。
6. 人工智能技术:
人工智能技术,如深度学习、计算机视觉等,可以帮助系统自动识别和处理复杂的场景。选择合适的人工智能技术可以提高系统的性能。
7. 系统集成:
将各种硬件和软件部件集成到一个完整的系统中,可以提高系统的性能。选择合适的系统集成方案可以确保系统的稳定性和可靠性。
综上所述,在机器视觉系统中,光源的选择只是其中一个关键因素。为了获得高质量的图像和提高系统的性能,需要综合考虑多个因素,并选择合适的硬件和软件部件进行集成。
额外参考文章:机器视觉中的光源选型及打光方案分析
这篇文章写的比较好,我拿来引用一下。