机器视觉初步11:目标分类

本文介绍了三种常用的目标分类方法:基于机器学习(如SVM)、深度学习(如CNN)和聚类(如K-means)。机器学习方法利用训练数据学习模型进行分类,深度学习通过特征提取和模型训练实现高效分类,而聚类方法则将目标分组后再进行分类。这些方法在计算机视觉和图像处理领域广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标分类是计算机视觉中一个常见的任务,旨在将图像中的目标物体分类到预定义的类别中。目标分类的常用方法有很多,下面简单介绍其中的几种:
在这里插入图片描述

1. 基于机器学习的目标分类方法

该方法使用机器学习算法对目标进行分类,常用的机器学习算法有支持向量机(SVM)、随机森林(Random Forest)和深度学习等。其中,深度学习是近年来目标分类的热门方法。
原理:基于机器学习的目标分类方法通过训练数据集学习目标分类的模型,该模型能够对新的目标进行分类。
实现方法:使用Python的机器学习库sklearn,可以实现多种机器学习算法。其中,使用scikit-learn的SVM分类器1实现基于机器学习的目标分类方法,示例代码如下:

from sklearn.svm import SVC

# 读取图像数据
image = ...

# 将图像数据划分为训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(image, target_class, test_size=0.2, random_state=42)

# 训练SVM分类器
svc = SVC()
svc.fit(X_train, y_train)

# 使用训练好的SVM分类器进行预测
y_pred = svc.predict(X_test)

使用Halcon的RegionProps功能,进行目标类别的标注。

* 标记数据集
dev_update_off ()
dev_close_window ()
dev_open_window_fit_size (0, 0, 1024, 768, -1, -1, WindowHandle)
set_display_font (WindowHandle, 14, "Arial", "", "")
dev_set_draw ("margin")
dev_set_line_width (3)
dev_set_color ("gray")

* 加载图像
read_image (Image, 'data/objects.jpg')

* 图像预处理
gen_empty_obj (H)
* 生成目标区域
gen_cross_contour_xld (Contours, 'crosses', 1, 20, 30)
gen_contour_polygon_xld (Rectangle, Contours, 'lines')
* 标注目标区域
dev_set_color ('red')
dev_display (Image)
dev_display (Rectangle
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值