codeforces 1096D Easy Problem dp

本文介绍了一种优化字符串处理算法的方法,旨在解决字符串s不含有'hard'子序列问题,通过动态规划策略,定义了四种状态dp[i][1]~dp[i][4],并详细解释了状态转移方程,最终实现求解最小代价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Easy Problem

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Vasya is preparing a contest, and now he has written a statement for an easy problem. The statement is a string of length nn consisting of lowercase Latin latters. Vasya thinks that the statement can be considered hard if it contains a subsequence hard; otherwise the statement is easy. For example, hard, hzazrzd, haaaaard can be considered hard statements, while har, hart and drah are easy statements.

Vasya doesn't want the statement to be hard. He may remove some characters from the statement in order to make it easy. But, of course, some parts of the statement can be crucial to understanding. Initially the ambiguity of the statement is 00, and removing ii-th character increases the ambiguity by aiai (the index of each character is considered as it was in the original statement, so, for example, if you delete character r from hard, and then character d, the index of d is still 44 even though you delete it from the string had).

Vasya wants to calculate the minimum ambiguity of the statement, if he removes some characters (possibly zero) so that the statement is easy. Help him to do it!

Recall that subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements.

Input

The first line contains one integer nn (1≤n≤1051≤n≤105) — the length of the statement.

The second line contains one string ss of length nn, consisting of lowercase Latin letters — the statement written by Vasya.

The third line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤9982443531≤ai≤998244353).

Output

Print minimum possible ambiguity of the statement after Vasya deletes some (possibly zero) characters so the resulting statement is easy.

Examples

input

Copy

6
hhardh
3 2 9 11 7 1

output

Copy

5

input

Copy

8
hhzarwde
3 2 6 9 4 8 7 1

output

Copy

4

input

Copy

6
hhaarr
1 2 3 4 5 6

output

Copy

0

题目大意:输入一个字符串s,每个字符s[i]有一个权重a[i]表示移除该字符的代价,现求使得字符串s不含有'hard'子序列所需要的最小代价和。

dp[i][1]:表示字符串s的前i个字符中不含有前缀'h'的最小代价

dp[i][2]:表示字符串s的前i个字符中不含有前缀'ha'的最小代价

dp[i][3]:表示字符串s的前i个字符中不含有前缀'har'的最小代价

dp[i][4]:表示字符串s的前i个字符中不含有前缀'hard'的最小代价

对于状态转移,例如对dp[i][3],如果位置i的字符不是r,那么dp[i][3] = dp[i - 1][3];否则,要么去掉位置i的字符,则代价为dp[i - 1][3] + a[i],如果不去除该位置字符,那么之前的序列不能含有'ha',则代价为dp[i - 1][2]。

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
#define ll long long
const int N = 1e5 + 10;
ll dp[N][5], a[N];
const ll INF = 1e15;
char s[N];
char ob[] = "xhard";
int n;
int main() {
    scanf("%d", &n);
    scanf("%s", s + 1);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    for (int i = 1; i <= n; i++)  dp[i][0] = INF;
     if (s[1] == 'h') dp[1][1] = a[1]; 
    for (int i = 2; i <= n; i++) 
        for (int j = 1; j <= 4; j++) {
            if (s[i] != ob[j]) {
                dp[i][j] = dp[i - 1][j];
                continue;
            }
            dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j] + a[i]);
        }
    printf("%lld\n", dp[n][4]);
    return 0;
}

 

### 关于 Codeforces 上二项装箱问题 #### 二项装箱问题概述 二项装箱问题是经典的组合优化问题之一,在计算机科学领域具有重要意义。该类问题通常涉及将一组不同大小的对象放入固定容量的容器中,目标是最小化使用的容器数量[^1]。 对于特定平台上的挑战实例,如Codeforces中的二项装箱问题,其核心在于设计高效算法来解决这一NP难问题。尽管找到最优解可能非常复杂,但存在多种启发式方法可以提供接近最佳的结果,并且这些方法能够在合理的时间内执行完毕。 #### 解决方案策略 一种常见的处理方式是采用贪心算法,即总是尝试把当前最大的未分配物品放置到第一个能够容纳它的箱子中;如果没有任何现有箱子能放下这件物品,则创建一个新的箱子用于装载它。这种方法简单易懂,但在某些情况下可能会导致次优解。 更复杂的近似算法包括首次适应下降(First Fit Decreasing, FFD),此技术首先按照降序排列所有项目尺寸,之后应用首次适配原则(FD)。FFD已被证明能在多项式时间内给出不超过理想最小值11/9倍数加四的解法质量保证[^2]。 此外还有其他高级求解途径比如动态规划、分支限界以及遗传算法等,它们各自适用于不同的应用场景并提供了不同程度上的性能改进。 ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; int main() { int n; cin >> n; vector<int> items(n); for(int i = 0; i < n; ++i){ cin >> items[i]; } sort(items.begin(), items.end(), greater<int>()); const int bin_capacity = 1000; // 假设每个bin的最大容量为1000单位体积 vector<int> bins; for(auto item : items){ bool placed = false; for(auto& b : bins){ if(b + item <= bin_capacity){ b += item; placed = true; break; } } if(!placed){ bins.push_back(item); } } cout << "Minimum number of bins required is: " << bins.size(); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值