线段树 模板 及 解释

线段树模板及解释

//线段树模板
struct line
{
int left,right;//左端点、右端点
int n;//记录这条线段出现了多少次,默认为0
};
struct line a[100];
int sum;
//建立
void build(int s,int t,int n)
{
int mid=(s+t)/2;
a[n].left=s;
a[n].right=t;
if (s==t) return;
a[n].left=s;
a[n].right=t; 
build(s,mid,2*n);
build(mid+1,t,2*n+1);
} 
//插入
void insert(int s,int t,int step)//要插入的线段的左端点和右端点、以及当前线段树中的某条线段
{     if (s==a[step].left && t==a[step].right)
      {
            a[step].n++;//插入的线段匹配则此条线段的记录+1
            return;//插入结束返回
      }
      if (a[step].left==a[step].right)   return;//当前线段树的线段没有儿子,插入结束返回
      int mid=(a[step].left+a[step].right)/2;
      if (mid>=t)    insert(s,t,step*2);//如果中点在t的右边,则应该插入到左儿子
      else if (mid<s)    insert(s,t,step*2+1);//如果中点在s的左边,则应该插入到右儿子
      else//否则,中点一定在s和t之间,把待插线段分成两半分别插到左右儿子里面
      {
            insert(s,mid,step*2);
            insert(mid+1,t,step*2+1);
      }
}
//访问
void count (int s,int t,int step)
{   
 if (a[step].n!=0)
sum=sum+a[step].n*(t-s+1);
 if (a[step].left==a[step].right)
return;
     int mid=(a[step].left+a[step].right)/2;
     if (mid>=t)
count(s,t,step*2);
     else
 if (mid<s)
 count(s,t,step*2+1);
     else
     {
            count(s,mid,step*2);
            count(mid+1,t,step*2+1);
      }
}

下面来自某大牛解释:

线段树的定义

定义1 长度为1的线段称为元线段。

定义2 一棵树被成为线段树,当且仅当这棵树满足如下条件:

  1. 该树是一棵二叉树。
  2. 树中每一个结点都对应一条线段[a,b]。
  3. 树中结点是叶子结点当且仅当它所代表的线段是元线段。
  4. 树中非叶子结点都有左右两个子树,做子树树根对应线段[a , (a + b ) / 2],右子树树根对应线段[( a + b ) / 2 , b]。

但是这种二叉树较为平衡,和静态二叉树一样,提前根据应用的部分建立好树形结构。针对性强,所以效率要高。一般来说,动态结构较为灵活,但是速度较慢;静态结构节省内存,速度较快。

线段树的性质与时空复杂度简介

下面介绍线段树的两个性质(证明略)。

性质1 长度范围为[1,L]的一棵线段树的深度不超过log(L-1) + 1。

性质2 线段树把区间上的任意一条长度为L的线段都分成不超过2logL条线段。

空间复杂度 存储一棵线段树的空间复杂度一般为O(L)。

时间复杂度 对于插入线段、删除线段,查找元素,查找区间最值等操作,复杂度一般都是O(log L)。 线段树主要应用了平衡与分治的性质,所以基本时间复杂度都和log有关。我们在应用线段树解决问题的时候,应尽量在构造好线段树的时候,使每种操作在同一层面上操作的次数为O(1),这样能够维持整体的复杂度O(log L)。

例题:

在自然数,且所有的数不大于30000的范围内讨论一个问题:现在已知n条线段,把端点依次输入告诉你,然后有m个询问,每个询问输入一个点,要求这个点在多少条线段上出现过; 最基本的解法当然就是读一个点,就把所有线段比一下,看看在不在线段中; 每次询问都要把n条线段查一次,那么m次询问,就要运算mn次,复杂度就是O(mn)

这道题m和n都是30000,那么计算量达到了10^9;而计算机1秒的计算量大约是10^8的数量级,所以这种方法无论怎么优化都是超时

因为n条线段是固定的,所以某种程度上说每次都把n条线段查一遍有大量的重复和浪费;

线段树就是可以解决这类问题的数据结构

举例说明:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次

在[0,7]区间上建立一棵满二叉树:(为了和已知线段区别,用【】表示线段树中的线段)

                            【0,7】
                     /                  \
              【0,3】                      【4,7】
              /      \                     /     \
         【0,1】     【2,3】          【4,5】      【6,7】
         /      \   /      \        /      \      /     \
    【0,0】【1,1】【2,2】 【3,3】【4,4】 【5,5】 【6,6】【7,7】

每个节点用结构体:

struct line
{
      int left,right;//左端点、右端点
      int n;//记录这条线段出现了多少次,默认为0
}a[16];

和堆类似,满二叉树的性质决定a[i]的左儿子是a[2i]、右儿子是a[2i+1];

然后对于已知的线段依次进行插入操作:

从树根开始调用递归函数insert

void insert(int s,int t,int step)//要插入的线段的左端点和右端点、以及当前线段树中的某条线段
{
      if (s==a[step].left && t==a[step].right)
      {
            a[step].n++;//插入的线段匹配则此条线段的记录+1
            return;//插入结束返回
      }
      if (a[step].left==a[step].right)   return;//当前线段树的线段没有儿子,插入结束返回
      int mid=(a[step].left+a[step].right)/2;
      if (mid>=t)    insert(s,t,step*2);//如果中点在t的右边,则应该插入到左儿子
      else if (mid<s)    insert(s,t,step*2+1);//如果中点在s的左边,则应该插入到右儿子
      else//否则,中点一定在s和t之间,把待插线段分成两半分别插到左右儿子里面
      {
            insert(s,mid,step*2);
            insert(mid+1,t,step*2+1);
      }
}

三条已知线段插入过程:

[2,5]
--[2,5]与【0,7】比较,分成两部分:[2,3]插到左儿子【0,3】,[4,5]插到右儿子【4,7】
--[2,3]与【0,3】比较,插到右儿子【2,3】;[4,5]和【4,7】比较,插到左儿子【4,5】
--[2,3]与【2,3】匹配,【2,3】记录+1;[4,5]与【4,5】匹配,【4,5】记录+1
[4,6]
--[4,6]与【0,7】比较,插到右儿子【4,7】
--[4,6]与【4,7】比较,分成两部分,[4,5]插到左儿子【4,5】;[6,6]插到右儿子【6,7】
--[4,5]与【4,5】匹配,【4,5】记录+1;[6,6]与【6,7】比较,插到左儿子【6,6】
--[6,6]与【6,6】匹配,【6,6】记录+1
[0,7]
--[0,7]与【0,7】匹配,【0,7】记录+1

插入过程结束,线段树上的记录如下(下方数字为每条线段的记录n):

                          【0,7】
                             1
              /                           \
           【0,3】                      【4,7】
              0                           0
      /              \              /            \
   【0,1】         【2,3】        【4,5】        【6,7】
     0               1              2              0
   /    \         /      \       /     \       /      \
【0,0】 【1,1】 【2,2】 【3,3】 【4,4】 【5,5】 【6,6】 【7,7】
   0      0       0      0       0      0       1      0

询问操作和插入操作类似,也是递归过程,略

2——依次把【0,7】 【0,3】 【2,3】【2,2】的记录n加起来,结果为2
4——依次把【0,7】 【4,7】 【4,5】【4,4】的记录n加起来,结果为3
7——依次把【0,7】 【4,7】 【6,7】【7,7】的记录n加起来,结果为1

不管是插入操作还是查询操作,每次操作的执行次数仅为树的深度——logN

建树有n次插入操作,nlogN,一次查询要logN,m次就是mlogN;总共复杂度O(n+m)*logN,这道题N不超过30000,logN约等于14,所以计算量在10^5~10^6之间,比普通方法快了1000倍;

这道题是线段树最基本的操作,只用到了插入和查找;删除操作和插入类似,扩展功能的还有测度、连续段数等等,在N数据范围很大的时候,依然可以用离散化的方法建树

POJ2528

题意:在一块墙上贴N张海报,输出最后从外面能看到的海报数量。 本质就是按顺序叠加很多线段,输出没有被完全覆盖的线段数目。

1. 坐标范围太大

我们不可能开一个[0, 10000000]大小的线段树,如何解决? 前述方法,离散化即可。

创建线段树

struct node{
int l, r; // 左右节点编号
int c; // 新增域
}T[MAXN*4]; 
void Construct(int l, int r, int k){
if(l == r){
    t[k].l = l; t[k].r = r;
    t[k].c = 0;
     return;
}
int mid = (r + l) / 2;
t[k].l = l; t[k].r = r; t[k].c = 0;
 Construct(l, mid, 2*k); // 递归创建左子树
 Construct(mid + 1, r, 2*k+1); // 递归创建右子树
} 

2. 那么,如何更新线段树呢?

新增加一个域

在节点结构体中,新增加一个变量,int c,意义如下:

1) c = 0时,表示当前线段未被任何广告覆盖或者被不同的广告所覆盖;

2) c > 0时,表示当前线段被唯一的广告c覆盖。

因此,我们可以思考一下,如何利用变量c,使得我们每次仅仅使用logn的复杂度即能完成更新嗯?

Logn复杂度的更新

void Insert(int l, int r, int c, int k){
    if(r == t[k].r && l == t[k].l){ //如果完全覆盖此区间,直接改变其域值即可
        t[k].c = c;
         return;
    }
    if(t[k].c > 0 && t[k].c != c){ //需要修改部分区间,先修改其子区间的域值
        t[2*k].c = t[k].c;
        t[2*k+1].c = t[k].c;
        t[k].c = 0;
    }
    int mid = (t[k].l + t[k].r) / 2; //递归更新子树
    if( r <= mid)
        Insert(l, r, c, 2*k);
    else if(l > mid)
        Insert(l, r, c, 2*k+1);
    else{
        Insert(l, mid, c, 2*k);
         Insert(mid + 1, r, c, 2*k+1);
    }
} 

基本原理就是,当我们插入广告i的时候,如果遇到某一个线段区间被当前广告完全覆盖,那么我们更新至此区间即可,同时标记此区间的域c为i,这样,下次我们再访问此区间,我们通过域c的值,即可以判断此区间被广告i完全覆盖;

如果此时此区间的部分需要被更改,那么,在更改前先更新此区间的下一层子区间即可,这样,便保证了区间更新的正确性。

3.输出结果——查询操作

毫无疑问,我们要统计最后的结果,只需要统计在各个节点中出现过的不同域值c。

void Search(int k){
    if(t[k].c != 0){
        if(!visit[t[k].c]){
            visit[t[k].c] = 1; ans++;
        } return;
    }
    if(t[k].r == t[k].l) return;
    int mid = (t[k].l + t[k].r) >> 1;
    Search(2*k);
    Search(2*k+1);
} 

注意,此操作的复杂度为O(n),而不是O(logn),想想为什么?

因为我们只在最后输出一次,因此无需考虑查询操作的复杂度问题,如果我们需要进行多次查询,即边插入边查询,那我们需要增加更多的域值.同时,我们还要考虑线段的删除,同样要保证logn的时间复杂度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值