不邻接植花
有 N 个花园,按从 1 到 N 标记。在每个花园中,你打算种下四种花之一。
paths[i] = [x, y] 描述了花园 x 到花园 y 的双向路径。
另外,没有花园有 3 条以上的路径可以进入或者离开。
你需要为每个花园选择一种花,使得通过路径相连的任何两个花园中的花的种类互不相同。
以数组形式返回选择的方案作为答案 answer,其中 answer[i] 为在第 (i+1) 个花园中种植的花的种类。花的种类用 1, 2, 3, 4 表示。保证存在答案。
示例 1:
输入:N = 3, paths = [[1,2],[2,3],[3,1]]
输出:[1,2,3]
示例 2:
输入:N = 4, paths = [[1,2],[3,4]]
输出:[1,2,1,2]
示例 3:
输入:N = 4, paths = [[1,2],[2,3],[3,4],[4,1],[1,3],[2,4]]
输出:[1,2,3,4]
提示:
- 1 <= N <= 10000
- 0 <= paths.size <= 20000
- 不存在花园有 4 条或者更多路径可以进入或离开。
- 保证存在答案。
My Answer
使用相邻没有使用的颜色
class Solution {
public int[] gardenNoAdj(int n, int[][] paths) {
Map<Integer, Set<Integer>> map = new HashMap<>();
for (int i = 0; i < n; i++)
map.put(i, new HashSet<>());
for (int i = 0; i < paths.length; i++) {
map.get(paths[i][0] - 1).add(paths[i][1]-1);
map.get(paths[i][1] - 1).add(paths[i][0]-1);
}
int[] res = new int[n];
for (int i = 0; i < n; i++) {
boolean[] used = new boolean[5];
for (int s : map.get(i))
used[res[s]] = true;
for (int j = 1; j < 5; j++) {
if (!used[j]) {
res[i] = j;
break;
}
}
}
return res;
}
}
剑指 Offer 64. 求1+2+…+n
求 1+2+…+n ,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。
示例 1:
输入: n = 3
输出: 6
示例 2:
输入: n = 9
输出: 45
限制:
1 <= n <= 10000
My Answer
class Solution {
public int sumNums(int n) {
boolean b = n>0 && ((n+=sumNums(n-1))>0);
return n;
}
}