Q-learning

Q-learning (value-based off-policy)

Q-learning 的关键在于建立 Q表, 例如在一个 Observation s1下对应两个action,分别为action1 和 action2 。对应Q值 Q(s1,a1), Q(s1,a2)。选取较大值进入下一个状态s2

Q-learning更新

假如我们在上一步选取了a2,那么
Q(s1,a2)现实 = R+ rQMax(s2) r为衰减值
Q(s1,a2)估计 = Q(s1,a2)
新的Q(s1,a2) = 老Q(s1,a2) + alpha[R+ r
QMax(s2)-Q(s1,a2)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值