- 博客(57)
- 资源 (4)
- 收藏
- 关注
原创 机器学习十大算法简介
本文对机器学习的常用算法进行常识性的认识,介绍这些算法是什么以及如何应用(主要是针对分类问题)以及对单个算法的理解的简介。本文要介绍的十大算法如下:①决策树;②随机森林;③逻辑回归;④SVM(support vector machine);⑤朴素贝叶斯;⑥K最近邻算法;⑦K均值算法;⑧Adaboost算法;⑨神经网络;⑩马尔科夫。
2022-02-24 14:30:29 2210 2
原创 如何将excel.xls文件批量转换成.xlsx格式
1.把多个excel表都放在同一个文件夹里面,并在这个文件夹里面2.用microsoft excel打开新建的excel表,并右键单击sheet1,找到“查看代码”,单击进去。进去之后就看到了宏计算界面3.将以下代码复制进窗体中'***********访问当前文件夹下全部子文件夹及文件,Dim iFile(1 To 100000) As StringDim count As IntegerSub xls2xlsx() iPath = ThisWorkbook.Path On
2022-05-19 13:09:57 10946 1
原创 【强化学习】Asynchronous Advantage Actor-Critic(A3C)
1 A3C简介A3C全称Asynchronous Advantage Actor-Critic,顾名思义,它采用的是Actor-Critic的形式(需要回顾Actor-Critic的,可以点击这里【强化学习】Actor-Critic(演员-评论家)算法详解)。为了训练一对Actor和Critic,我们将他复制多份红色的,然后同时放在不同的平行空间中,让他们各玩各的。然后每个红色副本都悄悄告诉黑色的Actor-Critic自己在那边的世界玩的怎么样,有哪些经验值得分享。然后还能从黑色的Actor-Criti
2022-04-25 15:33:40 5640
原创 【强化学习】Deep Q Network深度Q网络(DQN)
1 DQN简介1.1 强化学习与神经网络该强化学习方法是这么一种融合了神经网络和Q-Learning的方法,名字叫做Deep Q Network。Q-Learning使用表格来存储每一个状态state,和在这个state每个行为action所拥有的Q值。而当今问题实在是太复杂,状态可以多到比天上的星星还多(比如下围棋)。如果全用表格来存储它们,恐怕我们的计算机有再大的内存都不够,而且每次在这么大的表格中搜索对应的状态也是一件很耗时的事。不过在机器学习中,有一种方法对这种事情很在行,那就是神经网络。我们
2022-04-24 15:34:06 6316
原创 【强化学习】Deep Deterministic Policy Gradient(DDPG)算法详解
1 DDPG简介DDPG吸收了Actor-Critic让Policy Gradient 单步更新的精华,而且还吸收让计算机学会玩游戏的DQN的精华,合并成了一种新算法,叫做Deep Deterinistic Policy Gradient。那DDPG到底是什么样的算法呢,我们就拆开来分析,我们将DDPG分成’Deep’和’Deterministic Policy Cradient’又能被细分为’Deterministic’和’Policy Gradient’,接下来,我们开始一个一个分析。1.1 Dee
2022-04-22 14:42:56 8231
原创 【强化学习】Actor-Critic(演员-评论家)算法详解
1 Actor Critic算法简介1.1 为什么要有Actor CriticActor-Critic的Actor的前身是Policy Gradient,这能让它毫不费力地在连续动作中选取合适的动作,而Q-Learning做这件事会瘫痪,那为什么不直接用Policy Gradient呢,原来Actor-Critic中的Critic的前身是Q-Learning或者其他的以值为基础的学习法,能进行单步更新,而更传统的Policy Gradient则是回合更新,这降低了学习效率。现在我们有两套不同的体系,A
2022-04-22 13:45:25 19908
原创 【强化学习】Q-Learning算法详解
1 Q-Learning算法简介1.1 行为准则我们做很多事情都有自己的行为准则,比如小时候爸妈常说:不写完作业就不准看电视。所以我们在写作业这种状态下,写的好的行为就是继续写作业,知道写完他,我们还可以得到奖励。不好的行为就是没写完就跑去看电视了,被爸妈发现,后果很严重。小时候这种事情做多了,也就变成我们不可磨灭的记忆。这和我们提到的Q-Learning有什么关系呢?原来Q-Learning也是一个决策过程,和小时候的这种情况差不多。我们举例说明。假设现在我们处于写作业的状态,而且我们以前没有尝试过
2022-04-20 13:05:13 22998 2
原创 Lombok包安装成功,运行时却提示找不到get、set方法、构造器解决方法
确认lombok安装成功,注解没有报红的情况下,idea中运行提示找不到get、set方法或构造器,查看是否打开注解,如没有打开如下图勾选后应用即可解决改问题。
2022-02-28 11:32:58 2200
原创 mysql中字符串和时间相互转换的方法
1.当字符串格式和时间格式相同时,mysql会自动进行转换。例如:```sqlSELECT * FROM table WHERE ts = '20212.mysql中,DATE_FORMAT(date, format) 函数根据format字符串格式化date值,format字符串格式把字符串转为日期格式:SELECT DATE_FORMAT( '2011-09-20 08:30:45' , '%Y-%m-%d %H:%i:%S' );把日期转为字符串格式:SELECT DATE
2021-12-14 09:02:48 13009 2
原创 快速把多个excel合成一个表
1.把多个excel表都放在同一个文件夹里面,并在这个文件夹里面新建一个excel。2.用microsoft excel打开新建的excel表,并右键单击sheet1,找到“查看代码”,单击进去。进去之后就看到了宏计算界面。3.将以下代码复制进窗体中Sub 合并当前目录下所有工作簿的全部工作表()Dim MyPath, MyName, AWbNameDim Wb As Workbook, WbN As StringDim G As LongDim Num As LongDim
2021-12-11 10:00:22 1668
原创 Office 16 Click-to-Run Extensibility Component 卸载
安装Office 2016出现以上问题时可进行以下操作:1.Win + R 运行 ,输入Installer, 进入Installer文件夹2.在详细信息的信息列表栏 右键添加 在最下方 主题 选项3.根据主题选项的信息, 查找到Click-to-Run Extensibility Component的Installer4.右键 该 MSI程序, 选择卸载Click-to-Run Extensibility Component,只卸载这一项...
2021-12-11 09:25:26 11021 5
原创 pytorch深度学习(10):卷积神经网络(CNN)并尝试在GPU上运行模型
以pytorch深度学习(9):加载MNIST数据集,使用Softmax进行多分类一文中的例子,使用卷积层神经元,并将模型和数据放在gpu上运行代码如下:import torchfrom torchvision import transformsfrom torchvision import datasetsfrom torch.utils.data import DataLoaderimport torch.nn.functional as Fimport torch.optim as o
2021-12-01 14:04:18 2173
原创 pytorch深度学习(9):加载MNIST数据集,使用Softmax进行多分类
代码如下:import torchfrom torchvision import transformsfrom torchvision import datasetsfrom torch.utils.data import DataLoaderimport torch.nn.functional as Fimport torch.optim as optimbatch_size = 64transform = transforms.Compose([ transforms.ToTe
2021-12-01 10:30:57 696 1
原创 pytorch深度学习(8):加载数据集
以pytorch深度学习(7):处理多维特征输入–一文中的例子优化数据集加载,使用mini batch算法代码如下:import numpy as npimport torchfrom torch.utils.data import Dataset, DataLoaderclass DiabetesDataset(Dataset): def __init__(self, filepath): xy = np.loadtxt(filepath, delimiter=','
2021-11-30 16:52:06 174
原创 pytorch深度学习(7):处理多维特征输入
文章所需要的数据集diabetes.csv下载地址:https://download.csdn.net/download/shoppingend/52699628为免费下载资源,下载后只需将其放到自己的.py文件同一目录下数据定义:xy = np.loadtxt(‘diabetes.csv’, delimiter=’,’, dtype=np.float32)x_data = torch.from_numpy(xy[:, :-1])y_data = torch.from_numpy(xy[:, [-
2021-11-30 15:23:15 171
原创 pytorch深度学习(6):逻辑斯蒂回归(Logistic Regression)处理分类问题
数据 x_data = [[1.0], [2.0], [3.0]],分类:y_data = [[0], [0], [1]]代码如下:import torchx_data = torch.Tensor([[1.0], [2.0], [3.0]])y_data = torch.Tensor([[0], [0], [1]])class LogisticRegressionModel(torch.nn.Module): def __init__(self): super(Log
2021-11-30 11:14:50 690
原创 pytorch深度学习(5):pytorch实现线性回归y=w*x+b
数据 x_data = [1.0, 2.0, 3.0],y_data = [2.0, 4.0, 6.0]模型选择:y = w * x + b代码如下:import torch# 数据准备x_data = torch.Tensor([[1.0], [2.0], [3.0]])y_data = torch.Tensor([[2.0], [4.0], [6.0]])# 设计模型class LinearModel(torch.nn.Module): def __init__(self):
2021-11-30 09:52:16 1436
原创 pytorch深度学习(4):反向传播y=w*x
数据 x_data = [1.0, 2.0, 3.0],y_data = [2.0, 4.0, 6.0]模型选择:y = w * x代码如下:import torchx_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]w = torch.Tensor([1.0])w.requires_grad = Truedef forward(x): return x * wdef loss(x, y): y_pred = forwar
2021-11-29 16:26:01 343
原创 pytorch深度学习(3):随机梯度下降y=w*x
数据:x_data = [1.0, 2.0, 3.0], y_data = [2.0, 4.0, 6.0]模型选择:y = x * w代码如下:x_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]w = 1.0def forward(x): return x * wdef loss(x, y): y_pred = forward(x) return (y_pred - y) ** 2def gradient(x, y
2021-11-29 14:55:45 353
原创 pytorch深度学习(2):线性模型y=w*x+b
数据 x_data = [1.0, 2.0, 3.0],y_data = [5.0, 8.0, 11.0]模型选择:y = x * w + b代码如下:import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dx_data = [1.0, 2.0, 3.0]y_data = [5.0, 8.0, 11.0]def forward(x): return x * w
2021-11-29 13:25:50 1477
原创 pytorch深度学习(1):线性模型y=w*x
数据 x_data = [1.0, 2.0, 3.0],y_data = [2.0, 4.0, 6.0]模型选择:y = w * x代码如下:import numpy as npimport matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]def forward(x): return x * wdef loss(x, y): y_pred = forward(x) r
2021-11-29 11:31:33 701
原创 python深度学习:卷积神经网络图像分类(训练、测试和模型的加载保存)
简介本文内容是python官网上中文教程中的一个例子:实现一个卷积神经网络实现图像识别,所用到的数据集是cifar10,是一个十分类的图像分类数据集,每个对象的所属类别为1类,总共类别为10类,输入图像数据的维度是[1,1,32,32].下面是具体的代码实现部分。参考地址:https://pytorch.apachecn.org/#/docs/1.7/06代码实现1.了解数据下载cifar10数据集,获得训练集、测试集;将其用dataloader进行封装;选一条数据打印出来看看。import t
2021-11-25 11:31:43 7177 4
原创 mysql查询24小时内的数据
mysql查询当前时间24小时内的数据如下:where time >=(NOW() - interval 24 hour)
2021-10-28 15:28:22 2642
原创 Chrome谷歌浏览器通过安装插件JsonView格式化Json数据
1.JsonView插件下载2.用Chrome浏览器加载插件①解压压缩包②打开Chrome浏览器,在地址栏输入chrome://extensions/③点击右上角开关,打开开发者模式④点击“加载已解压的扩展程序”⑤导入刚刚解压的压缩包,选择插件目录JSONView-for-Chrome-master\WebContent⑥刷新页面即可看到要读的Json数据已经可视化展示
2021-09-26 09:09:28 399 1
原创 Map和HashMap的区别
Map集合的特点:1、Map集合一次存储两个对象,一个键对象,一个值对象2、键对象在集合中是唯一的,可以通过键来查找值HashMap特点:1、使用哈希算法对键去重复,效率高,但无序2、HashMap是Map接口的主要实现类
2021-08-23 11:05:46 319
原创 vs code中terminal(终端)无法输入命令(2步轻松解决)
1. 去掉兼容性运行右键属性,选择兼容性,点击更改多有用户的设置,去掉“以兼容模式运行这个程序”2.在settings.json文件中配置点击左下角设置,选择一个命令面板选择首选项:Open Settings(JSON)在打开的文件中输入以下两行代码最后重启命令行即可输入命令了
2021-07-13 15:05:58 10669 7
原创 mysql数据库报错1166 - Incorrect column name解决办法
1166 - Incorrect column name错误释义:列名不正确错误原因:新增字段时字段名中不小心多加了空格解决办法:删除字段名中多余的空格,保存即可
2021-07-12 10:25:43 5293 2
原创 Git首次创建上传一个新的项目到Gitlab或GitHub
安装好git客户端后,在git bash界面输入如下内容即可完成邮箱的注册:$ git config --global user.name "user.name"(说明:双引号中需要你的用户名,这个可以随便输入,比如“zhangsan”)$ git config --global user.email "yourmail@youremail.com.cn"(说明: 双引号中需要输入你的有效邮箱,比如“12131312@qq.com”)
2021-05-25 09:31:32 109
原创 Spring AOP环绕通知
import lombok.extern.slf4j.Slf4j; import org.aspectj.lang.ProceedingJoinPoint; import org.aspectj.lang.annotation.Around; import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Pointcut; import org.springframework.stereotyp
2021-04-07 11:17:45 87
原创 详细解读Spring中的@transactional使用
事务管理是应用系统开发必不可少的一部分。Spring为事务管理提供了丰富的功能支持。Spring事务管理分为编码式和声明式两种方式。编程式事务指的是通过编码方式实现事务;声明式事务基于 AOP,将具体业务逻辑与事务处理解耦。声明式事务管理使业务代码逻辑不受污染, 因此在实际使用中声明式事务用的比较多。声明式事务有两种方式,一种是在配置文件(xml)中做相关的事务规则声明,另一种是基于@Transactional 注解的方式。注释配置是目前流行的使用方式,因此本文将着重介绍基于@Transactional 注
2021-04-07 11:03:19 179
原创 JAVA序列化实例:implements Serializable
什么是序列化:序列化的过程,就是一个“freeze”的过程,它将一个对象freeze住,然后进行存储,等到再次需要的时候,再将这个对象de-freeze就可以立即使用。什么情况下需要序列化: 1. 当你想把的内存中的对象写入到硬盘的时候。 2. 当你想用套接字在网络上传送对象的时候。 3. 当你想通过RMI传输对象的时候。稍微解释一下:1. 【保存在硬盘中时】比如说你的内存不够用了,那计算机就要将内存里面的一部分对象暂时的保存到硬盘中,等到要用
2021-02-26 15:08:19 1122
原创 java实现小游戏贪吃蛇
java实现贪吃蛇小游戏。贪吃蛇游戏是一款休闲益智类游戏。既简单又耐玩。该游戏通过控制蛇头方向吃蛋,从而使得蛇变得越来越长。
2021-01-19 14:20:55 122
原创 Cannot download ‘https://start.spring.io‘: Request failed with status code 403
Cannot download 'https://start.spring.io': Request failed with status code 403通过浏览器可以打开https://start.spring.io,但是idea一直提示资源不可用解决方案使用阿里云的地址 https://start.aliyun.com/
2021-01-12 11:04:26 740
原创 Windows环境下springboot集成mqtt
安装mqtt下载地址:https://www.emqx.io/cn/downloads下载成功后解压,在bin目录下打开cmd,输入命令 `emqx install`安装成功后输入命令`emqx start ` 启动启动成功后可登录mq后台127.0.0.1:18083查看,并验证是否安装成功,默认的登录名admin,密码publicspringboot集成mqtt添加依赖mqtt配置MqttConfigurationmqtt消息生产端mqtt消息消费端消息发送接口调用接口发送消息
2021-01-05 08:46:24 316
原创 通用mapper集成使用和常用方法汇总
通用mapper集成使用和常用方法汇总。通用mapper集成。pom文件引入依赖tk.mybatis。mapper接口要继承Mapper(tk.mybatis.mapper.common.Mapper)。.mapper对应的xml文件。通用mapper常用方法汇总。select。insert。update。delete。Example
2020-12-30 16:15:55 346
原创 Swagger UI使用介绍
swagger 是一个规范和完整的框架,用于生成、描述、调用和可视化 RESTful 风格的 Web 服务。总体目标是使客户端和文件系统作为服务器以同样的速度来更新。文件的方法,参数和模型紧密集成到服务器端的代码,允许API来始终保持同步。作用: 1.接口文档自动在线生成。 2.功能测试。Swagger是一组开源项目,其中主要项目如下:1.Swagger-tools:提供各种与Swagger进行集成和交互的工具。例如模式检验、Swagger1.2文档转换成Swagger2.0文档等功能。
2020-12-30 09:16:46 2155
原创 maven依赖下载不下来,手动下载必然成功的方法
maven依赖下载不下来,手动下载必然成功的方法在cmd命令行输入指令mvn dependency:get -DremoteRepositories=url -DgroupId=groupId -DartifactId=artifactId -Dversion=version命令需要修改替换其中的url、groupId、artifactId、version
2020-12-29 08:03:56 663 1
原创 JS 页面跳转与值传递(解决url传参中文乱码问题)
JS 页面跳转与值传递(解决url传参中文乱码问题)//页面跳转window.location.href = "地址?param=" + encodeURIComponent(param;//encodeURIComponent对参数进行编码,防止传值过程中文乱码//也可使用encodeURI编码,注意encodeURI需要对整条url编码//接收url,读取参数值var url = document.location.href;var param;if(url.indexOf("?") !
2020-12-22 16:42:35 1498
文章【强化学习】Policy Gradient(策略梯度)算法详解中的代码资源
2022-04-21
文章【强化学习】Q-Learning算法详解中的代码资源
2022-04-20
超级玛丽demo(java实现)可以直接运行
2020-11-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人