参考文献:
[1]Feng C, Taguchi Y, Kamat V R. Fast plane extraction in organized point clouds using agglomerative hierarchical clustering[C]// IEEE International Conference on Robotics and Automation. IEEE, 2014:6218-6225.
摘要:三维点云的实时平面提取对于许多机器人应用至关重要。我们提出了一种新的算法,用于在由Kinect传感器等设备获得的有组织点云中实时可靠地检测多个平面。通过将这样的点云均匀地划分为图像空间中的非重叠的点组,首先构建一个图形,该图形的节点和边缘分别表示一组点和其邻域点。然后,我们在此图形上执行成块层次聚类,以系统地合并属于同一平面的节点,直到平面拟合平均平方误差超过阈值为止。最后我们利用逐像素的区域增长方法来细化提取的平面。通过我们的实验证明,所提出的算法能够在35Hz以上的帧速率下,在640x480点云中可靠地检测场景中的所有主平面,这样使我们的方法比现有的算法快得多。
Introduction P2:
本文提出了一种适用于有组织点云的有效平面提取算法,如Kinect传感器获取的深度图。我们的算法首先通过将点云划分成图像空间中大小一致的几个不重叠区域来构造一个图。然后,该算法对图执行自下而上的、聚集的分层聚类(Ahc):它重复进行(1)寻找具有最小平面拟合均方误差(MSE)的区域,(2)将其与其邻域之一合并,从而导致最小平面拟合均方误差(MSE)。结果表明,在初始节点数为对数线性的情况下,可以实现聚类过程,实现了实时平面提取。为了细化聚类区域的边界,聚类过程之后是像素级区域的增长。在实验中,我们将我们的算法与最先进的算法进行了比较.我们的算法实现了实时性能(运行超过35赫兹)640x480像素深度地图,同时提供了与最先进的算法相比的精度。一些示例结果如图1所示。
图1.使用我们的算法进行的生成具有不同初始节点大小的平面提取结果。提取的平面与不同的颜色叠加在RGB图像上(黑色表示非平面区域)。白色破折号线显示区域增长细化之前的分割边界。初始节点大小10x10检测场景中的大部分平面(左上角),其3D视图显示(左下角)。初始节点大小为4x4,在较小的范围内显示出更多的节段,如楼梯和桌子腿(右上),而20x20则侧重于提取大型平面结构,如楼层和墙壁(右下角)。
contribution
This paper makes the following contributions:
(1)提出了一种有效的平面提取算法,该算法基于对有组织的点云成块聚类概念
(2)分析了聚类算法的复杂性,证明了聚类算法在初始节点数上是对数线性的。
(3)展示了该方法的实时性能,精度可与目前先进的算法媲美。
Introduction中的相关研究介绍
平面提取:提出了从3D点云进行平面提取的几种不同算法。
(1)基于RANSAC的方法[1]得到了广泛的应用。这些方法通常遵循迭代地在数据上应用RANSAC算法的范例,同时去除相对应平面的内点。由于RANSAC需要相对较长的计算时间用于随机平面模型选择和比较,所以开发了几种不同的变体。Oehler等人[2]首先对点云进行了Hough变换和连接成分分析,然后应用RANSAC细化每个生成的“冲浪板”(每640x480点2s)。几种算法[3]-[5]在点云的局部区域上应用了RANSAC(这减小了每个RANSAC运行中考虑的数据大小以提高速度),然后从本地发现的平面实例到整个点云(0.2s[3]或0.1s[4]/640x480点;0.03s[5]/320x240点)。
(2)基于区域增长的方法是另一个受欢迎的选择。H.Ahnel等[6]和Poppinga等[7]通过点平面距离阈值和MSE阈值(0.2s/25,344个点)生长点。Holz等[8]通过其表面法线偏差(0.5s/640x480点)增加了点,这需要每个点的正常估计。相似但更缓慢的变体是体素生长[9]。代替生长点,Geigev等[10]首先从数据的每条扫描线提取线段,然后在扫描线上生长线段(在MATLAB中每18,100点每18,100个点)。
(3)存在不属于这两组的其它方法。Holz等人[11]首先将点云聚集在正常空间中,并通过其与原点的距离(每640x480点0.14s)进一步对每组进行聚类。为了避免每个点的正常估计,Enjarini等[12]设计了用于平面分割的深度特征的梯度,其可以快速计算。基于图的分割也使用自适应阈值[13]、[14](每148,500点0.17s[13])。虽然我们的方法还使用图形来表示数据关系,但是我们的方法与以前的方法不同:1)没有使用RGB信息;2)不需要每一点的正常估计;更重要的是,3)使用动态边缘权重来代替固定与[13]中的合并顺序的静态边缘权重。
下篇介绍该篇论文的正文主体部分