北大《推荐系统》课程-混合推荐算法-整体式混合

本文介绍了推荐系统中的一种整体式混合方法,包括特征组合、特征扩充和基于图模型的混合推荐。特征组合是将不同知识源整合,而特征扩充则通过模型输出增强输入特征。基于图模型的混合推荐利用双层图结构,将多种信息统一表示,以实现全面且灵活的推荐策略。
摘要由CSDN通过智能技术生成

目录

3、整体式混合

3.1 特征组合

3.2 特征扩充

3.3基于图模型的混合

3.3.1基于双层图模型的混合推荐


注:北大刘宏志老师的《推荐系统》课程的学习,图片来源于课程PPT和参考书籍

3、整体式混合

基本思想:对算法进行内部调整,将多个知识源或多种方法整合在一起,只包含一个推荐器;常用的方法有特征组合、特征扩充和基于图模型的混合。

3.1 特征组合

基本思想:将不同的知识源进行整合。

 图3.1 特征组合

3.2 特征扩充

基本思想:不是简单的对不同知识源进行混合,而是采用更为复杂的转换步骤。

常见做法:基于相关知识,利用一个模型的输出对另一个模型的输入特征进行扩充或增强。

例如:

 图3.2 特征扩充实例

3.3基于图模型的混合

基本思想:利用图将多种不同的信息整合在一起进行统一表示;将推荐问题转化为一个图搜索或者边预测的问题。

目标:使推荐具有一个全面、统一的表示,能灵活支持多种推荐方法。

3.3.1基于双层图模型的混合推荐

 图3.3双层图

 图3.4双层图的混合推荐

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值