scipy短时傅里叶分析STFT

38 篇文章 12 订阅

scipy短时傅里叶分析

基本原理：

X t [ n ] = x [ n ] w [ n − t H ] X_t[n]=x[n]w[n−tH]

X [ n ] = ∑ t x t [ n ] w [ n − t H ] ∑ t w 2 [ n − t H ] X[n]=\frac{∑_tx_t[n]w[n−tH]}{∑_tw^2[n−tH]}

NOLA约束确保OLA重建方程分母中出现的每一个归一化项都是非零的。通过CHECK_NOLA可以检验是否可以选择满足该约束条件的窗口、非标准窗口和非标准节点。

scipy.signal.stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None, detrend=False, return_onesided=True, boundary='zeros', padded=True, axis=- 1, scaling='spectrum')

"""
Compute the Short Time Fourier Transform (STFT).

STFTs can be used as a way of quantifying the change of a nonstationary signal’s frequency and phase content over time.
STFT可以用来量化非平稳信号的频率和相位随时间的变化。

Parameters
x:array_like
Time series of measurement values

fs:float, optional
Sampling frequency of the x time series. Defaults to 1.0.
x时间序列的采样频率

window:str or tuple or array_like, optional
Desired window to use. If window is a string or tuple, it is passed to get_window to generate the window values, which are DFT-even by default. See get_window for a list of windows and required parameters. If window is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window.

nperseg:int, optional
Length of each segment. Defaults to 256.

noverlap:int, optional
Number of points to overlap between segments. If None, noverlap = nperseg // 2. Defaults to None. When specified, the COLA constraint must be met (see Notes below).

nfft:int, optional
Length of the FFT used, if a zero padded FFT is desired. If None, the FFT length is nperseg. Defaults to None.

detrend:str or function or False, optional
Specifies how to detrend each segment. If detrend is a string, it is passed as the type argument to the detrend function. If it is a function, it takes a segment and returns a detrended segment. If detrend is False, no detrending is done. Defaults to False.

return_onesided:bool, optional
If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. Defaults to True, but for complex data, a two-sided spectrum is always returned.

boundary:str or None, optional
Specifies whether the input signal is extended at both ends, and how to generate the new values, in order to center the first windowed segment on the first input point. This has the benefit of enabling reconstruction of the first input point when the employed window function starts at zero. Valid options are ['even', 'odd', 'constant', 'zeros', None]. Defaults to ‘zeros’, for zero padding extension. I.e. [1, 2, 3, 4] is extended to [0, 1, 2, 3, 4, 0] for nperseg=3.

Specifies whether the input signal is zero-padded at the end to make the signal fit exactly into an integer number of window segments, so that all of the signal is included in the output. Defaults to True. Padding occurs after boundary extension, if boundary is not None, and padded is True, as is the default.

axis:int, optional
Axis along which the STFT is computed; the default is over the last axis (i.e. axis=-1).

scaling: {‘spectrum’, ‘psd’}
The default ‘spectrum’ scaling allows each frequency line of Zxx to be interpreted as a magnitude spectrum. The ‘psd’ option scales each line to a power spectral density - it allows to calculate the signal’s energy by numerically integrating over abs(Zxx)**2.

Returns
f:ndarray
Array of sample frequencies.

t:ndarray
Array of segment times.

Zxx:ndarray
STFT of x. By default, the last axis of Zxx corresponds to the segment times.
x的短时傅立叶变换。默认情况下，Zxx的最后一个轴对应于分段时间。
"""

示例：

from scipy import signal
import matplotlib.pyplot as plt
import numpy as np

rng = np.random.default_rng()

#Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz
# , corrupted by white noise of exponentially decreasing magnitude sampled at 10 kHz.

fs = 10e3
N = 1e5
amp = 2 * np.sqrt(2)
noise_power = 0.01 * fs / 2
time = np.arange(N) / float(fs)
mod = 500*np.cos(2*np.pi*0.25*time)
carrier = amp * np.sin(2*np.pi*3e3*time + mod)
noise = rng.normal(scale=np.sqrt(noise_power),
size=time.shape)
noise *= np.exp(-time/5)
x = carrier + noise
# Compute and plot the STFT’s magnitude.

f, t, Zxx = signal.stft(x, fs, nperseg=1000)
plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp, shading='gouraud')
plt.title('STFT Magnitude')
plt.ylabel('Frequency [Hz]')
plt.xlabel('Time [sec]')
plt.show()

引用：

[^1] :scipy.signal.stft — SciPy v1.9.3 Manual
[^2] :Oppenheim, Alan V., Ronald W. Schafer, John R. Buck “Discrete-Time Signal Processing”, Prentice Hall, 1999.
scipy.signal.stft)
[^3] :Daniel W. Griffin, Jae S. Lim “Signal Estimation from Modified Short-Time Fourier Transform”, IEEE 1984, 10.1109/TASSP.1984.1164317

• 1
点赞
• 2
收藏
觉得还不错? 一键收藏
• 打赏
• 0
评论
08-14 224
11-25
03-05 718
12-16 7479
10-18 1628
04-29 8889
10-28 1万+
04-08 235
05-23 7671
07-11 1万+

“相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

KPer_Yang

¥1 ¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。