信号分析的短时傅里叶变换(scipy.signal.stft)

短时傅里叶变换(STFT)通过将长信号分割为多个短段进行频谱分析,提供了一种平衡时间分辨率和频率分辨率的方法。本文探讨了STFT的概念、参数设置的影响以及在ECG心电信号分析中的应用。窗函数的选择(如汉明窗)、窗长(nperseg)和重叠数(noverlap)是关键参数,它们会直接影响到频率和时间的精度。示例代码展示了如何使用scipy库进行STFT,并通过调整窗长展示其对结果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

短时傅里叶变换定义了一个非常有用的时间和频率分布类,其制定了任意信号时间和频率变换的附属幅度,短时傅里叶变换的实质就是把一个比较长的时间信号分成相同长度的更短的段,在每个短的段上计算傅里叶得到傅里叶频谱图。
简单来说就是将整个是与过程分解成无数个等长的小过程,每个小过程近似平稳,再进行短时傅里叶变换。

用法

scipy.signal.stft(x, fs, window, nperseg, noverlap, nfft, detrend, return_oneside, boundary, padded, axis)

常用参数:

1.x :传入STFT变换的时域信号
2.fs : 时域信号的采样频率,默认为1.0
3.window : 时域信号分割的时候需要的窗函数,常用的窗函数有boxcar,triang,hamming, hann等
4.nperseg : 窗函数的长度,默认值为256
5.noverlap : 窗函数重叠数,默认为窗长的一半
6.nfft : FFT的长度,默认为nperseg,如果设置为大于nperseg会自动进行0填充
7.return_oneside : True返回复数实部,None返回复数,默认为False

注意事项

窗长(即为nperseg)设置的太短,窗内截取的信号太短,会导致频率分析不够精确,频率分辨率差;窗长设置太长,时域不够精确,时间分辨率低。

例子

举个简单的小例子,以ECG心电信号为例子

def stft(x, **params):
    '''
    :params x: 输入信号
    :params params : {       
    fs: 采样频率
    window: 窗。默认为汉明窗
    nperseg: 每个段的长度,默认为256
    noverlap: 重叠的点数。指定值时需要满足COLA约束。默认为窗长的一半
    nfft: fft长度
    detrend: (str、function或False) 指定如何去趋势,默认为False,不去趋势
    return_onesided: 默认为True。返回单边谱
    boundary: 默认在时间序列两端添加0
    padded: 是否对时间进行填充0(当长度不够的时候)
    axis: 可以不必关心这个参数
    }
    :return: f:采样频率数组;t:短时间数组;Zxx:STFT结构
    '''
    f, t, zxx = signal.stft(x, **params)
    return f, t, zxx

def stft_specgram(x, i, **params):
    f, t, zxx = sgn.stft(x, **params)
    plt.pcolormesh(t, f, np.abs(zxx))
    plt.colorbar()
    plt.ylabel('Frequency [Hz]')
    plt.xlabel('Time [sec]')
    plt.tight_layout()
    plt.show()
    plt.clf() # 清理画布
    return t, f, zxx

将窗长设置过长时
在这里插入图片描述

将窗长设置过短时
在这里插入图片描述


希望这篇文章对大家的学习有所帮助!

### MATLAB 中 `signal.internal.stft.stftParser` 函数的 `verifyDataAndTime` 方法错误解决方案 当遇到 MATLAB 的内置函数报错时,通常是因为输入数据不符合预期的要求。对于 `signal.internal.stft.stftParser.verifyDataAndTime` 在第 342 行发生的错误,可以从以下几个方面排查并解决问题: #### 输入信号验证 确保输入到 STFT 计算中的时间序列数据是有效的数值数组,并且不含有 NaN 或 Inf 值。 ```matlab % 检查是否有非有限值 if any(~isfinite(signal)) error('Input signal contains non-finite values'); end ``` #### 时间向量一致性检查 如果提供了显式的时间向量,则需确认其长度与信号样本数一致。 ```matlab if length(timeVector) ~= length(signal) error('The time vector and the input signal must have equal lengths.'); end ``` #### 参数配置合理性检验 核对用于调用此功能的所有参数设置是否合理,特别是采样频率 (`Fs`) 和窗口大小等关键参数应满足特定条件[^1]。 ```matlab if Fs <= 0 || ~isscalar(Fs) error('Sampling frequency (Fs) should be a positive scalar value.'); endif ``` #### 调试建议 为了更精确地定位问题所在,在运行代码前可以通过断点调试的方式逐步跟踪变量状态变化;也可以利用 try-catch 结构捕获异常信息以便进一步分析原因。 通过上述措施能够有效减少因不当使用而导致的功能失效情况发生。值得注意的是,由于该部分属于内部实现细节,官方文档可能不会提供详细的说明,因此理解相关算法原理以及正确准备输入数据显得尤为重要[^2]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小k同学!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值