主要内容:
1、探索ACC去除运动伪影后依然存在其他噪声影响的问题;
2、观察ACC和心率变化的相关性,建模;
3、对心率变化做回归分析,并且去除异常的结果;
算法框架:
1、计算
S
a
c
c
Sacc
Sacc:
S
a
c
c
,
i
=
∑
j
=
1
n
(
X
a
c
c
,
j
2
+
Y
a
c
c
,
j
2
+
Z
a
c
c
,
j
2
)
,
S_{acc,i}=\sum_{j=1}^n(X_{acc,j}^2 +Y_{acc,j}^2 + Z_{acc,j}^2),
Sacc,i=j=1∑n(Xacc,j2+Yacc,j2+Zacc,j2),
S a c c = S a c c , i − S a c c , i − 1 S_{acc}=S_{acc,i}-S_{acc,i-1} Sacc=Sacc,i−Sacc,i−1
2、计算 β i \boldsymbol{\beta}_{i} βi: 1 × 6 1\times6 1×6向量, [ S a c c , i − 6 , … , S a c c , i ] [S_{acc,i-6},\dots,S_{acc,i}] [Sacc,i−6,…,Sacc,i];
3、NN预测得到: r ^ \hat{\boldsymbol{r}} r^;
4、估计的心率差: r \boldsymbol{r} r;
5、3和4的结果线性回归;
6、后处理步骤:
过滤步骤:
h
r
′
=
(
I
+
λ
D
T
D
)
−
1
h
r
hr'=\left(I+\lambda D^TD\right)^{-1}hr
hr′=(I+λDTD)−1hr
如果被过滤掉,则拟合:
f
(
x
)
=
a
(
x
−
x
1
)
3
+
b
(
x
−
x
1
)
2
+
c
(
x
−
x
1
)
1
+
d
f\left(x\right)=a\left(x-x_1\right)^3+b\left(x-x_1\right)^2+c\left(x-x_1\right)^1+d
f(x)=a(x−x1)3+b(x−x1)2+c(x−x1)1+d